The Evaluation of Partially Degraded Material Using Nonlinear Propagation Characteristics of Ultrasonic Wave

초음파 비선형 전파특성을 이용한 부분 열화 재료의 평가

  • Kim, Kyung-Cho ;
  • Jhang, Kyung-Young (Dept. of Mechanical Engineering, Hanyang University) ;
  • Hisashi, Yamawaki
  • 김경조 (일본 금속재료기술연구소) ;
  • 장경영 (한양대학교 기계공학부) ;
  • 야마와키히사시 (일본 금속재료기술연구소)
  • Published : 2001.02.01


In this paper, the nonlinear behavior of ultrasonic wave in partially degraded material is considered. For this aim, FDM(finite difference method) model for the nonlinear wave equation was developed with the restriction to the 1-D longitudinal wave motion and how the partial degradation in material contributes to the detected nonlinear parameter was analyzed quantitatively. In order to verify the rightness of this simulation method, the relation between the detected nonlinear parameter and the continuous distribution of degradation obtained from simulation was compared with experiment results and the simulation and experiment results showed similar tendency. It can be known from simulation result that the degree of degradation, the range of degradation and the continuous distribution of degradation have strong correlation with the detected nonlinear parameter. As it was possible in these simulations that only special part is assumed as degraded one, the quantitative evaluation of partially degraded material may be obtained by using this method.


Nonlinear Acoustic Effect;Material Degradation;Finite Difference Method;Nonlinear Wave Equation;Nonlinear Parameter


  1. Miyoshi, S., 1996, 'Ultrasonic Technology Handbook,' Nikkan Kogyo Newspaper Co. (In Japanese)
  2. Yamawaki, H., Satio, T., Masuda, C. and Fukuhara, H., 1994, 'Development of Three Dimensional Simulation and Its Application,' Jpn. J. Appl. Phys. 33, pp. 3126-3129
  3. Yamawaki, H. and Saito, T., 1996, 'Computer Simulation of Acoustic Waves Propagation in Elastically Anisotropic Materials,' Materials Science Forum Vols. 210-213, pp. 589-596
  4. Sharpe, R. S., 1982, 'Research Techniques in Nondestructive Testing, Vol. VI,' Academic Press, pp. 107-150
  5. 김경조, 장경영, 1999, '음향 비선형 파라미터의 추정을 위한 바이스펙트럼 해석법의 적용,' 비파괴 검사학회지, 19(2), pp. 85-92
  6. Kim, K. C. and Jhang, K. Y., 1996, 'Basic Research on the Nondestructive Measurement of Nonlinear Elastic Modulus by using Ultrasonic Wave,' Proceeding of Asian Pacific Conference for Fracture and Strength '96,pp. 923-928
  7. AULD, B. A., 1973, 'Acoustic Fields And Waves in Solids,' John Wiley & Sons Inc, pp. 68-84
  8. Truell, Rohn, Elbaum, Charles, Chick and Bruce, B., 1969, 'Ultrasonic Methods in Solid State Physics,' New York Academic Press,pp. 38-52
  9. TenCate, James A., Abble, Koen E. A Van Den, 1996, 'Laboratory Study of Linear and Nonliear Elastic Pulse Propagation in Sandstone,' JASA 100, pp. 1383-1389
  10. Hiakta, Akira, Chick, Bruce, B., Elbaum, Charles, 1965, 'Dislocation contribution to the Second Harmonic Generation of Ultrasonic Waves,' JAP 36(1), pp. 229-236
  11. Birks, A. S., 1991, 'Nondestructive Testing Handbook 7 : Ultrasonic Testing,' ASNT
  12. Jeong, K. Na, Cantrell, J. H., Yost and William, T., 1996, 'Linear and Nonlinear Ultrasonic Properties of Fatigued 410Cb Stainless Steel,' Review of QNDE 15, pp. 1347-1351
  13. 장경영, 김경조, 1998, '비선형 음향효과를 이용한 미세결함(열화)의 조기검출,' 비파괴 검사학회지, 18(5), pp. 365-372
  14. Hikata, A., Chick, Bruce B. and Elbaum, Charles, 1965, 'Dislocation Contribution to the Second Harmonic Generation of Ultrasonic Wave,' JAP36(1), pp. 229-236
  15. Hikata, A., Chick, B. B. and Elbaum, C., 1963, 'Effect of Dislocations on Finite Amplitude Ultrasonic Wave in Aluminum,' Applied Physics Letters 1.3(11), pp. 195-197
  16. Yost, W. T., Cantrell, John H. Jr and Breazeale, M. A., 1981, 'Ultrasonic Nonlinearity Parameters and Thire-order Elastic Constants of copper between 300 and $3^{\circ}K$,' JAP52(1),pp. 126-128
  17. Shkolink, Iosif E., Cameron and Timothy, M., 1996, 'Nonlinear Acoustic Methods For Strength Testing of Materials,' The 14th ISNA,pp. 316-320
  18. 장경영, 佐藤拓宋, 1993, '비선형 탄성-음향 효과를 이용한 비선형 탄성계수의 계측과 금속재료의 특성평가,' 대한기계학회논문집, 17(8), pp. 1971-1993
  19. Sato, T., Ma, W., Ninoyu, H., Jhang, K. Y. and Kousgi, Y., 1993, 'Estimation of the Stress State Inside Metals Using stress Perturbing Waves and Probe Waves,' NDT & E International,26(3),pp. 119-126