An Experimental Study on the Factors that Affect Fatigue Crack Growth Retardation Behavior in S45C Steel

S45C 강의 피로균열전파 지연거동의 영향인자에 관한 실험적 연구

Kim, Seon-Jin;An, Seok-Hwan

  • Published : 2001.03.01


Constant ΔK fatigue crack growth tests were performed by applying an intermediate multiple overload for S45C steel. The purpose of the present study is to investigate effects of specimen thickness at various baseline stress intensity factor range levels (ΔK(sub)b), overload application position (a/W) and overload application frequency (OL(sub)HZ) on fatigue crack growth retardation behavior. The principal results are summarized as follows. The amount of retardation for a given ΔK(sub)b level is increased with increasing the baseline stress intensity factor range level for all specimen thickness. The normalized minimum crack growth rate is increased with increasing the specimen thickness, except for ΔK=45MPa√m. The retardation cycle is decreased with increasing a/W and increased with OL(sub)HZ.


Fatigue Crack Growth Retardation Behavior;Minimum Crack Growth Rate;Overload Application Position;Retardation Cycle;Multiple Overload;Specimen Thickness


  1. Virkler, D. A., Hillberry, B. M. and Geol, P. K., 1979, 'The Statistical Nature of Fatigue Crack Propagation,' ASME J. Eng. Mat. and Tech., Vol. 101, pp. 148-153
  2. 김정규, 송달호, 박병훈, 1992, '7075-T73 알루미늄합금의 단일과대 및 고-저블럭하중에 의한 지연거동과 수명예측 모델,' 대한기계학회지, 제16권, 제9호, pp. 1605-1614
  3. ASTM E647-93, 1993, 'Standard Test Method for Measurement of Fatigue Crack Growth Rates,'
  4. Ashok Saxena and Hudak, S. J., 1978, 'Review and Extension of Compliance Information for Common Crack growth Specimen,' Int. J. Fract., Vol. 14, No. 15, pp. 453-462
  5. 김선진, 남기우, 김종훈, 이창용, 박은희, 서상하, 1997, '강의 피로균열지연거동에 미치는 과대하중의 영향과 통계적 변동에 관한 연구,' 한국해양공학회지, 제11권, 제3호, pp. 76-88
  6. Bernard, P. J., Lindley, T. C. and Richards, C. E., 1976, 'Mechanisums of Overload Retardation During Fatigue Crack Propagation,' ASTM STP 595, pp. 78-97
  7. Mills, W. J. and Hertzberg, R. W., 1975, 'The Effect of Sheet Thickness on Fatigue Crack Retardation in 2024-T3 Aluminum Alloys,' Eng. Fract. Mech., Vol. 7, pp. 705-711
  8. Shih, T. T. and Wei, R. P., 1975, 'Effects of Specimen Thickness on Delay in Fatigue Crack Growth,' J. of Testing and Evaluation, Vol. 3, No. 1, pp. 46-47
  9. 김정규, 박병훈, 류석현, 1989, '7075-T3알루미늄 합금의 피로균열진전거동 및 지연현상에 미치는 두께의 영향,' 대한기계학회논문집, 제13권, 제3호, pp. 577-593
  10. Suresh, S., 'Micromechanisums of Fatigue Crack Growth Retardation Following Overloads,' Eng. fract. mech., Vol. 18, No. 3, pp. 577-593
  11. Knott, J. F. and Pickardard, A. C., 'Effects of Overloads on Fatigue Crack Propagation,' Mat. Sci., Vol. 11, pp. 399-404
  12. Elber, W., 1971, 'The Significance of Fatigue Crack Closure in Damage Tolerance in Aircraft Structures,' ASTM STP 486, pp. 230-242
  13. Fleck, N. A., 1988, 'Influence of Stress State on Crack Retardation,' ASTM STP 924, pp. 157-183
  14. Wheeler, O. E., 1972, 'Spectrum Loading and Crack Growth,' J. of Basic Engineering, Vol. 94, pp. 181-186
  15. Willenborg, J., Engle, R. M. and Wood, H. A., 1971, 'A Crack Growth Retardation Model Using an Effective Stress Concept,' AFFDLTM-71-1-FBR
  16. 이순복, 1997, '신뢰성 향상을 위한 피로 설계 기술,' 대한기계학회 '97년도 춘계학술대회논문집, pp. 71-77
  17. Bannantine, J. A., Comer, J. J. and Handrock, J. L., 1990, Fundamentals of Metal Fatigue Analysis, Prentice-Hill