Effects of Nozzle Size and Height of Aluminum Foam Heat Sink on Jet Impingement Heat Transfer

충돌제트 열전달에 발포알루미늄 방열기의 높이와 노즐의 크기가 미치는 영향

  • Kim, Seo-Yeong (Thermal Flow Control Research Center, Korea Institute od Science and Technology ) ;
  • Baek, Jin-Uk (Thermal Flow Control Research Center, Korea Institute od Science and Technology ) ;
  • Gang, Byeong-Ha
  • Published : 2001.09.01


An experimental study is carried out for an aluminum foam heat sink attached to an isolated heat source to evaluate high potential of aluminum foam as a heat sink with impinging jets. The effects of the pore density and the height of the aluminum foam heat sink, the jet Reynolds number, and the nozzle diameter are delineated in comparison with a conventional pin type heat sink. It is found that the aluminum foam with small pores is inefficient for the heat transfer enhancement due to the large flow friction at the given porosity. In the parameter ranges of the present study, the change in the nozzle diameter shows no significant effects on the surface temperature of the aluminum foam heat sink at a given Reynolds number. The heat transfer enhancement is strongly dependent on the jet Reynolds number and shows a maximum value at a moderate Reynolds number.


  1. Hollworth, B. R., and Durbin, M., 1989, 'Impingment Cooling of Electronics,' Nat. Heat Transfer Conf., HTD-Vol. 111, pp. 89-96
  2. Martin, H. 1977, 'Heat and Mass Transfer Between Impinging Gas Jet and Solid Surface,' Advances in Heat Transfer, Vol. 13, pp. 1-60
  3. Viskanta, R., 1993, 'Heat Transfer to Impinging Isothermal Gas and Flame jets,' Exp. Thermal and Fluid Sci., Vol. 6, pp. 111-134
  4. Hansen, L. G., Webb, B. W. 1993, 'Air Jet Impingment Heat Transfer from Modified Surface,' Int. J. Heat Mass Transfer, Vol. 36, pp. 989-997
  5. Webb, R. L., 1994, 'Principles of Enhanced Heat Transfer,' John Wiley & Sons. Inc.
  6. Paek, J. W., Kang, B. H., Kim, S. Y. and Hyun, J. M, 2000, 'Effective thermal Conductivity and Permeability of Aluminum Foam Material,' Int. J. Thermophysics, Vol. 21, pp. 453-464
  7. Kim, S. Y., Paek, J. W. and Kang, B. H., 2000, 'Flow and Heat Transfer Correlations for Porous fin in a Plate-Fin Heat Exchanger,' ASME J. of Heat Transfer, Vol. 122, pp. 572-578
  8. Gibson, L. J. and Ashby, M. F., 1997, 'Celluar Solids,' Cambridge University Press. Cambridge
  9. Fu, W.-S., Huang, H.-C. and Liou, W.-Y., 1996, 'Thermal Enhancement in Laminar Channel Flow with a Porous Block,' Int. J. Heat Mass Transfer, Vol. 39, pp. 2165-2175
  10. Paek, J. W., Kim, S. Y. and Kang, B. H., 2000, 'Heat Transfer from an Aluminum Foam Heat Sink for Electronics Cooling,' Proc. of the 4th JSME-KSME thermal engineering Conf., Kobe, Japan, pp. 635(2)-640(2)
  11. Fu, W. -S. and Huang, H. -C, 1997, 'Thermal Performance of Different Shape Porous Blocks Under an Impinging Jet,' Int. J. Heat Mass Transfer, Vol. 40, pp. 2261-2272
  12. 백진욱, 김서영, 강병하, 2001, '충돌공기제트에서의 다공성 방열기의 열전달 특성,' 설비공학논문집, Vol. 13, pp. 73-79
  13. Figliola, R. S. and Beasley, D. E., 1995, 'Theory and Design for Mechanical Measurements,' John Wiley and Sons, NewYork
  14. ERG Duocel Aluminum Foam Catalog, 1995, Energy Research and Generation Inc., Okland, CA.
  15. Wmac, D. J., Ramadhyani, S., and ncropera, F. P., 1993, 'Correlating Equations for Impingement Cooling of small Heat Sources with Single Circular Liquid Jets,' ASME J. of Heat Transfer. Vol. 115, pp. 106-115