PRECONDITIONING $C^1$-QUADRATIC SPLINE COLLOCATION METHOD OF ELLIPTIC EQUATIONS BY FINITE DIFFERENCE METHOD

  • Woo, Gyung-Soo (DEPARTMENT OF MATHEMATICS, CHANGWON NATIONAL UNIVERSITY) ;
  • Kim, Seok-Chan (DEPARTMENT OF MATHEMATICS, CHANGWON NATIONAL UNIVERSITY)
  • Published : 2001.02.01

Abstract

We discuss a finite difference preconditioner for the$C^1$ Lagrance quadratic spline collocation method for a uniformly elliptic operator with homogeneous Dirichlet boundary conditions. Using the generalized field of values argument, we analyzed eigenvalues of the matrix preconditioned by the matrix corresponding to a finite difference operator with zero boundary condition.

References

  1. SIAM J. Numer. Anal. v.29 Fast direct solvers for piecewise Hermite bicubic orthogonal spline collocation equations B.Bialecki;G.Fairweather;K.Bennett
  2. Spline tool box for use with matlab C. de Boor
  3. SIAM J. Numer. Anal. v.19 collocation at Gaussian points C. de Boor;B. Swartz
  4. BIT v.37 Multigrid and mutilevel methods for quadratic spline collocation C.C.Christara;B.Smith
  5. SIAM J. Matrix Anal. Appl. v.21 Analysis of iterative line spline collocation methods for elliptic partial differential equations A. Hajdjjidimos;E.N.Houstis;J.R.Rice;E.Vavalis
  6. J. Austral. Math. Soc. Ser. v.B39 Preconditioning collocation methods using quadratic splines with application to 2nd -order separable elliptic equations S.D.Kim
  7. Numer. Math. v.76 Exponential decay of c1-cubic splines vanishing at the local interior symmetric points S.D.Kim;S.C.Kim
  8. Numer. Math v.77 Finite difference preconditioning cubic spline collocation method of elliptic equations S.D.Kim;H.O.Kim;Y.H.Lee
  9. Numer. Math. v.72 Preconditioning cubic spline collocation discretization of elliptic equations S.D.Kim;S.V.parter
  10. SIAM. J. Numer. Anal. v.27 Preconditioning and Boundary Conditions T.A.Manteuffel;S.V.Parter
  11. SIAM J. Numer. Anal. v.13 Orthogonal collocation for elliptic partial differential equations P.M.Prenter;R.D.Russell
  12. SIAM J. Numer. Anal. v.17 A C1 finite element collocation method for elliptic partial differential equations P.Percell;M.F.Wheeler
  13. SIAM J. Sci. Statist. Comput. v.7 GMRES: A generalized minimal residual algorithm for solving non-symmetric livear systems Y.Saad;M.H.Schultz
  14. Numer. Math v.81 Fast algorithms for high-order spline collocation systems W.Sun
  15. SIAM J. Numer. Anal. v.36 Spectral analysis of Hermite cubic spline collocation systems