POINTWISE CONVERGENCE OF WAVELET EXPANSION OF $K^r_M^r(R)$

  • Published : 2001.02.01

Abstract

The expansion of a distribution of $K^r_M^r(R)$ in terms of regular orthogonal wavelets is considered. The expansion of a distribution of $K^r_M^r(R)$ is shown to converge pointwise to the value of the distribution where is exists.

References

  1. Ten Lectures on Wavelets I.Daubechies
  2. Tohoku Math. J. v.13 Note on the n-dimensional tempered ultra-distributions M.Hasumi
  3. Studia. Math. v.16 Sur la valeur et la limite d'une distribution dans un point S.Lojasiewicz
  4. Ondelette et operateurs I Y.Meyer
  5. Kyungpook Math. J. v.23 no.2 Structure theorem and Fourier transform for distributions with restricted growth D.H.Pahk
  6. Tsukuba J. Math v.23 no.3 Wavelets in the generalized tempered distributions Byung Keun Sohn;Dae Hyoen Pahk
  7. Trans. A. M. S. v.223 Hypoelliptic convolution equations in K?? G.Sampson;Z.Zielezny
  8. Wavelets-A Tutorial in Theory and Applications Wavelets and Generalized Functions G.G.Walter;C.K.Chui(ed.)
  9. J. Approx. Thoery v.80 no.1 pointwise convergence of wavelet expansions