• Published : 2001.02.01


First, we show the finiteness property of the homotopy fixed point set of p-discrete toral group. Let $G_\infty$ be a p-discrete toral group and X be a finite complex with an action of $G_\infty such that X^K$ is nilpotent for each finit p-subgroup K of $G_\infty$. Assume X is $F_\rho-complete$. Then X(sup)hG$\infty$ is F(sub)p-finite. Using this result, we give the condition so that X$^{hG}$ is $F_\rho-finite for \rho-compact$ toral group G.


  1. Lecture Notes in Math. v.304 Homotopy limits, completions and localizations A.K.Bousfield;D.K.kan
  2. Invent. Math. v.103 Equivariant stable homotopy and Sullivan's conjecture G.Carlsson
  3. Transformation groups T.T.Dieck
  4. Ann. of Math. v.139 Homotopy fixed point methods for Lie groups and finite loop sapces W.G.Dwyer;C.W.Wilkerson
  5. Publ. I. H. E. S. v.75 Sur les espaces fonctionnels dont la source est le classifiant d'un p-groupe abelian elementaire J.Lannes
  6. Annals of Math. v.120 The Sullivan conjecture on maps from classifying sapces H.R.Miller
  7. Anals of Math. v.121 The Sullivan conjecture on maps from classifying sapces H.R.Miller
  8. Handbook of algebraic topology Classfying spaces and finite loop spaces D.Notbohm
  9. Chicago Lecture Notes in Mathematics Unstable modules over the Steenrod Algebra and Sullivan's fixed point set sonjecture Lionel Schwartz
  10. Algebraic topology E.Spainer