WEYL SPECTRA OF THE $\chi-CLASS$ OPERATORS

  • Han. Young-Min (DEPARTMENT OF MATHEMATICS, SUNGKYUNKWAN UNIVERSITY) ;
  • Kim, An-Hyun (DEPARTMENT OF MATHEMATICS, CHANGWON NATIONAL UNIVERSITY)
  • Published : 2001.02.01

Abstract

In this paper we introduce a notion of the $\chi-CLASS$ operators, which is a class including hyponormal operators and consider their spectral properties related to Weyl spectra.

References

  1. Acta Sci. Math v.27 A note on operators whose spectrum is a spectral set S.K.Berberian
  2. Michigan Math. J. v.16 An extension of Weyl's theorem to a class of not necessarily normal operators
  3. Indiana Univ. Math. J. v.20 The Weyl spectrum of an operator
  4. Math. Ann. v.184 Some conditions on an operator implying normality
  5. Proc. Amer. Math. Soc. v.26 Some conditions on an operator implaying normality Ⅱ
  6. Proc. Amer. Math. Soc. v.34 Numerical range for certain classes of operators R.Bouldin
  7. Ann. Math. v.82 Structure of commutators A.Brown;C.Pearcy
  8. Can. J. Math. v.18 Multiplicative commutators of operators
  9. Michigan Math. J. v.13 Weyl's theorem for nonnormal operators L.A.Coburn
  10. A Hilbert Space Problem Book P.R.Halmos
  11. Math. Z. v.232 On the structure of polynomially compact operators Y.M.Han;S.H.Lee;W.Y.Lee
  12. Proc. Royal Irish Acad. v.85A no.2 Fredholm, Weyl and Browder theory R.E.Harte
  13. Invertibility and Singularity for Bounded Linear Operators
  14. J. Operator Theory v.30 The punctured neighbourhood theorem for incomplete spaces R.E.Harte;W.Y.Lee
  15. Trans. Amer. Math. Soc. v.349 Another note on Weyl's theorem
  16. Trans. Amer. Math. Soc. v.235 On Weyl's spectrum of an operators T. Ichinose
  17. Rev. Roum. Math. Pures Appl. v.17 On Weyl's spectrum of an operator V.I.Istratescu
  18. J. Math. Anal. Appl. v.7 On von Neumann's theory of spectral sets A.Lebow
  19. Math. Japo v.39 On Weyl's theorem W.Y.Lee;H.Y.Lee
  20. Glasgow Math. J. v.38 A spectral mapping theorem for the Weyl spectrum W.Y.Lee;S.H.Lee
  21. Illinois J. Math. v.18 On the Weyl spectrum K.K.Oberai
  22. Illinois J. Math. v.21 On the Weyl spectrum
  23. CBMS 36, Providence:AMS Some Recent Developments in Operator Theory C.M.Pearcy
  24. Indian Acad. Sci.(Math. Sci.) v.91 Weyl's theorem and thin spectra S.Prasanna
  25. J. Math. Mech. v.16 Structure of A?A - AA? H.Radjavi
  26. Math. Nachr. v.4 Eine Spektraltheorie fur allegemeine Operatoren eines unitaren Raumes J. von Neumann
  27. Proc. Amer. Math. Soc. v.38 A hyponormal operator whose spectrum is not a spectral set B.L.Wadhwa
  28. Rend. Circ. Mat. Palermo v.27 Uber beschrankte quadratische Formen H.Weyl