CONFORMAL DENSITY OF VISIBILITY MANIFOLD

  • Published : 2001.02.01

Abstract

In this paper, we prove the existence and uniqueness of a $\delta(\Gamma)$-conformal density on the limit set of $\Gamma$ acting on visibility manifold H for a Fuchsian group $\Gamma$.

References

  1. Progress in Mathematics v.61 Manifolds of non positive curvature W.Ballmann;M.Gromov;V.Schroeder
  2. Pacific Jounal of Math. v.159 Measures de Patterson Sullivan sur le bord d'un espace hyperbolique au sense de Gromov M.Coornaert
  3. Comparison Theorems in Geometry J.Cheeger;D.G.Ebin
  4. Trans. American Mathematical Society v.167 Geodesic flow in certain manifolds without conjugate points P.Eberlein
  5. Pacific Journal of Math. v.46 Visibility manifolds P.Eberlein;B.O'Neil
  6. Geometric measure theory H.Federer
  7. Ann. inst. Henri Poincare Physique Theorique v.53-54 Invariant measure for the geodesic flow and measures at infinity on negatively curved manifolds V.A.Kaimanovich
  8. The ergodic theory of discrete groups P.J.Nicholls
  9. Analytical and Geometric Aspects of Hyperbolic Space Measures on limit sets of Kleinian group S.J.Patterson
  10. Acta Math. v.136 The limit set of a Fuchsian group S.J.Patterson
  11. Publ. Math. I. H. E. S. v.50 The density at infinity of a discrete group of hyperbolic motions D.Sullivan
  12. Transactions of A. M. S. v.348 no.12 The ergodic theory of discrete isometry groups on manifolds of variable negative curvature C.Yue