Effects of Heat Treatment on the Antigenicity of Gamma–Irradiated Egg White Albumin

Ju-Woon Lee, Hong-Sun Yook, Kyoungh-Wan Cho, Mee-Ree Kim*, Cheon-Jeai Kim** and Myung-Woo Byun*

The Team for Radiation Food Science and Biotechnology, Korea Atomic Energy Research Institute, Daejeon 305-600, Korea
*Dept. of Food and Nutrition, Changnam National University, Daejeon 305-764, Korea
**Dept. of Animal Products Science, Konkuk University, Seoul 143 701, Korea

Abstract

This research was conducted to study the effects on antigenicities (allergenicity) and structural changes of gamma–irradiated hen’s egg albumin (ovalbumin, OVA) by heating. Three groups of OVA solution (2.0 mg/mL) were prepared: 1) heat treatment; 2) irradiation after heating; 3) heating after irradiation. Samples were isothermally heated and/or irradiated at the absorption dose of 10 kGy. Competitive indirect ELISA was individually formatted with egg–allergic patients IgE (P–IgE), and mouse murine monoclonal IgG (M–IgG) and rabbit polyclonal IgG (R–IgG) for evaluating binding abilities of antibodies to OVA in the sample solutions. Binding abilities of antibodies to thermally denatured OVA were changed: R–IgG to the sample treated with above 60°C, M–IgG to that above 70°C, and P–IgE to that above 80°C, respectively. P–IgE did not well recognize OVA heated at 80°C and the above. However, binding abilities of M–IgG and R–IgG highly increased. Significant differences of binding abilities were not observed in all samples with the combination of heat treatment and irradiation, regardless the order of the treatment. Turbidity of samples increased both by heating and by irradiation, and the increase by irradiation was much higher than by heating. These results showed that allergenicity of OVA reduced by gamma irradiation was not affected by heating.

Key words: ovalbumin, heating, gamma irradiation, allergenicity, antigenicity, turbidity

서 론

식품으로부터 유발되는 과민반응은 식품을 섭취하였을 때 유발되는 자가면역질환의 일종으로 소화불량, 구토, 설사, 두드러기, 호흡곤란 등 다양한 임상적 증상을 나타내며, 환자에게는 대상식품의 기호 및 원인 식품을 함유한 가공식품의 성분을 재현한다.(1,2).

식품 알러지질 유발하는 원인식품 중에서 계란은 가장 발생빈도가 높은 식품들 중 하나로도 섭취 후 몇 분안에 피부반응을 나타내며, 심한 경우는 질병발작(anaphylaxis)을 일으켜 생명을 위협하기도 한다.(3). 계란 중 단백질은 단백질 함량이 낮은 비해 상대적으로 높고, 계란알러지를 유발하는 주요 알레르기질로 알려진 ovalbumin(OVA)이나 ovomucoid 등의 알레르겐들은 대부분 단백에 함유되어 있다.(4).

식품으로부터 발생되는 알레르기를 억제하기 위해 단백분해 효소를 이용한 알레르기의 가수분해 기술이 소개되어 알려져 있고, 최근에 본 연구를 이용하는 방법으로서 효소가수분해제를 이용한 연구가 실험적으로 시도되고 있으나, 심장한 효과가 보이지 않았다. 따라서, 알레르기 질병을 위한 적절한 기술 개발이 요구되고 있다.

한편 방사선 식품조제가 식품의 위생학적 측면의 측면의 효과적인 방법을 위한 기술로서 현재 그 사용이 널리되며, 특히 최근 미국의과학회에서는 유.소아의 식품알러지 반응을 방산방치방법으로서 방사선 조제기술을 권고하여 이 기술의 발전 및 완화 및 이용이 더욱 기대된다(10).

감마선 조제에 의한 식품 알레르기의 크로미네어 변화가 알레르기
에 존재하는 IgE에 대한 항원결합기(epitope)들의 항원성 및 알러지성의 변화를 유지한다는 연구결과가 발표되었다. 알러지 반응을 위한 방법으로서 감마신 조사기술의 이용이 고려되고 있다(11-14). 최근의 연구에서 계열 알러지 환자의 IgE의 감마신 조사된 OVA에 대한 항원-항체 반응력이 감소하는 것이 보고되어(15), 이 기술의 실용화를 위한 더 많은 연구가 필요하다. 대부분의 실험들은 간접적이며 이용되었으며, 동물실험에서도 같은 결과를 보였지만, 이전 논문에 따르면 OVA의 알리지성 및 항원성이 변이하게 되어 감소되었다고 보고되었으나(16,17), 감마신 조사된 OVA가 같은 결과가 되었을 때 알리지성 및 항원성의 변화에 미치는 영향은 아직까지 조사되지 않았다. 따라서 알리지 저감화를 위한 감마신 조사의 적용은 간접적이며 같은 단계의 구조가 변화되는 가공처리 방법에서도 감마신 조사된 OVA의 알리지성 및 항원성의 변화가 정량화되어야 할 필요가 있다.

본 연구에서는 간접과 감마신 조사의 병용처리가 OVA의 항원성 및 알리지성의 변화에 미치는 영향을 조사하기 위한 연구의 일환으로, 감마신 조사된 OVA로 가열처리한 다음 3가지의 항체를 이용한 효소연결법(enzyme linked immunosorbert assay, ELISA)을 사용하여 현전-항체 반응력의 변화를 관찰하였다.

재료 및 방법

항원과 항체
OVA는 Sigma Chemical Co., St Louis, MO, USA의 제품이며, 이는 표준 항원과 알리지로 사용하였다. OVA에 대한 단글론 항체(MIgG)로 상업적으로 판매되는 mouse anti-OVA IgG Sigma를 구입하여 사용하였다. OVA에 대한 단글론 항체는 전체의 구조한(15)으로 토기어 면역학적으로 OVA를 간접적이며 상대적으로 동일한 항체를 이용하였다. 본 식적인 방식은 1회 이상의 측정을 통해 반응을 간접시켰다. 1회 이상의 반응이 있으면 간접시험을 시행하여 양성 반응을 보였던 환자 중 radioimmuno-assay 검정 결과 양성 단계에 항원 특이성 IgE의 농도가 2-8 이상(0.7 IU/mL 이상)의 양성 반응을 보였던 환자의 혈청(P-lgE)을 사용하였다. 환자의 혈청을 채취하여 즉시 혈청을 냉고 슬라에서 보관하여 실험에 이용하였으며, 응성 대조 혈청으로는 알리지 환자를 정상인 5명으로부터 혈청을 채취하여 그 혈청을 사용하였다. 반응을 측정하기 위하여 horseradish peroxidase(HRP)가 농축된 2마종 항체를 각각 Sigma사로부터 구입하여 사용하였다. 즉, M-lgG에 대해서는 rabbit anti-mouse IgG, R-lgG에 대해서는 goat anti-rabbit IgG, 그리고 P-lgG에 대해서는 rabbit anti-human IgE에 HRP가 결합된 것이었다.

시료의 준비
OVA를 0.01 M sodium phosphate buffered saline(PBS, NaCIO of 0.15 M, pH 7.4)에 2.0 mg/mL의 농도로 준비하였다. OVA 용액을 각각 가열처리, 가열후 감마신 조사, 그리고 감마신 조사후 가열처리로 구분하여 실험에 사용하였다.

가열처리
시료의 가열처리를 위해 가열처리구와 가열후 감마신 조사구로 구분된 OVA 용액을 유리시험관(직경 1.0 cm)에 5 mL씩 담고 추청기를 쌓은 후 thermostatic(CTF 9008, Ellab, Denmark)에서 가열처리하였다. 이때 실험온도는 37, 60, 70, 75, 80, 85, 90°C였으며, 정해진 온도에서 15분간 경치시켜 가열한 후 천장온도 온도가 낮아졌으므로, 일반 시료의 100°C의 가열처리와 가열연결처리를 위해 각각의 tube를 끓는 물에 15 분간 경치거나 가열병류(MLS 5000, Sanyo Co., Tokyo, Japan)에서 펄프시켰다. 가열 처리 후 같은 방법으로 낮겨서 시험에 사용하였다.

감마신 조사
감마신 조사시 가열처리구로 준비된 용액을 5 mL씩 유리시험관에 놓고 추청기를 쌓고, 가열처리후 감마신 조사구 가열처리된 시료와 함께 10 Kgy의 베타선량을 받도록 감마신 조사시(BR-79, Nordion International Ltd., Ontario, Canada, 100 KiloCurie activity)에서 조사하였다. 이렇게 조사시의 온도는 10°C였으며, 농축선량의 확인은 Fricke dosimetry(ceric/cerosine dosimeter)(18)를 사용하였고, 농축선량의 오차는 ±0.1 Kgy였다.

경험간접효소연결법
이전에 보고된 Lee 등(19)의 방법을 약간 수정하여 각각의 항체로 ELISA법을 확립하였다. 각 항체별 추출 조건을 조절하여 OVA를 정량할 수 있는 표준곡선을 작성하였다. 이때 ELISA의 실험조건은 다음과 같다(Table 1). 즉, polystyrene flatbottom microtitrate plates(Maxisorp, Nunc, Kamstrup, Denmark)에 OVA를 basic coating buffer(0.1 M sodium carbonate, pH 9.6)를 사용하여 임 iar한 농도로 흩석한 후 100 (μL)/well에 첨가하여 4°C에서 하룻밤 동안 microwell에 고정시켰고, 1%의 gelatine 용액 130 μL을 첨가하여 blocking에 준비하였다. 일정한 농도로 흩석된 표준 OVA 용액과 흩석된 항체용액 각각의 well에 50 μL을 첨가하고 반응시켰다. HRP를 공명결합한 2차 항체를 PBS 졸액으로 흩석하여 well에 100 μL을 첨가하여 반응시킨 후, 0.04% o-phenylenediamine(Sigma Chemical Co.) 기질을 사용하여 발색을 유도하고, 체적은 그 well에 2.0 M H2SO4 용액으로 반응을 중지시킨 후 492 nm로 고정한 ELISA Reader(CERES UV-900C, BIO-TEK instruments Inc., MI, USA)에서 흐름도를 측정하여 microplate well에 고정된 OVA에 결합한 항체의 양을 상대적으로 구하였다. 각 단계별 반응 후 well을 0.05%(v/v) Tween 20을 담아한 PBS 졸액으로 4회 세척하였고, coating을 제외한 모든 반응은 37°C에서 100분간 반응시켰다. 반응 후 열
이진 응광도를 사용하여 각 항체별 OVA 경량용 표준곡선을 작성하였다.

OVA의 정량
시료용액내에 항체와 반응하는 OVA를 정량하기 위해 위와 같은 방법으로 ELISA를 실시하였다. 즉, OVA가 고정되어 있는 well에 각각의 시료용액을 20 μg/mL의 농도로 회석하여 항체용액과 함께 50 μL씩 주입하고 반응시켜 시료용액에 존재하는 OVA와 항체와의 반응성을 조사하여 표준곡선에서 얻은 방정식에 대입하여 OVA의 농도를 산출하였다.

시료용액의 흡광도 변화
강마신 조사와 가열처리에 의한 시료용액의 흡광도 변화를 관찰하기 위해 Chan 등(20)의 방법을 사용하여 측정하였다. 가열 및 강마신 조사된 시험용액을 340 nm로 고정된 spectrophotometer(PerkinElmer, Shimatsu Co, Ltd., Tokyo, Japan)에서 응광도를 측정하여 그 값을 시료의 흡광도로 사용하였다.

결과 평가 및 통계처리
표준곡선 작성에 의해 각 항체에 대해 동일한 실험을 5회 반복 실시하였으며, OVA의 정량 및 시료용액의 흡광도 검사를 각각 5회 반복 실시하여 얻어진 결과들을 SAS® software(21)에서 프로그래밍된 general linear procedures, least square 평균값을 Duncan의 multiple range test법을 사용하여 평가하였다.

결과 및 고찰
OVA 정량을 위한 표준곡선
시료용액에 존재하는 OVA를 정량하기 위한 표준곡선을 각 항체별로 작성하였다(Fig. 1). 각 표준곡선에서 얻어진 OVA의 검출 범위 및 검출 한도는 Table 1에 나타났다. M-IgG가 가장 높은 항체에 대한 착취성을 나타내었으며, P-IgG와 R-IgG는 거의 같은 수준의 착취성을 나타냈다. 항체에 대한 착취점은 양의 본성의 이유로 매우 중요한 요소로서 일반적으로 항체의 착취점이 높을수록 항체 항원을 좀 더 정확하게 정량할 수 있다(22). 단골은 항체의 경우 다양한 항체보다 항체착취성이 높은 것은 낮은 농도에서도 쉽게 표지항원을 일시하기 때문이며(11), 본 연구에서도 M-IgG가 P-IgG나 R-IgG보다 더 높은 항체착취성을 나타내었다.

P-IgG의 ELISA에서 OVA를 3.9에서 125.0 μg/mL의 회석 범위에서 갖추올 수 있었으며, 이때의 검출 한계는 0.1 μg/mL로 나타났다. M-IgG로 갖추올 ELISA에서는 7.8에서 62.5 μg/mL의 검출 범위를 나타내었고, 검출 한계는 0.01 μg/mL이었고, R-IgG를 사용한 표준곡선에서 OVA는 7.8에

Fig. 1. Standard curves for quantifying intact ovalbumin (OVA).
The curves were made by CI-ELISA individually formatted with egg-allergic patients’ IgE (P-IgE), mouse monoclonal IgG (M-IgG) and rabbit polyclonal IgG (R-IgG) against OVA. Standard solution was prepared by dilution of intact OVA solution (2.0 mg/mL). The equations in figures were used to determine the amount of OVA in sample solution recognized by Ab: X = Concentration of OVA; Y = OD value obtained from immune reaction of each Ab and coated OVA.
서 1,000 μg/mL의 범위에서 검출될 수 있었으며, 검출 하계는 0.1 μg/mL이었다.

감마선 조사 및 가열처리에 의한 OVA의 항원성 변화 가열처리 후 시료용액에 존재하는 OVA에 대한 각 항체의 반응성의 변화는 Table 2에 나타났다. 각 항체가 인식하는 OVA의 영역은 항체의 종류에 따라 다르게 나타났는데, R-IgG는 60°C, M-IgG는 70°C부터, 그리고 P-IgE의 경우 80°C부터 항체반응성이 변화하는 것으로 판정되었다. 지금까지 보고된 OVA의 영역은 약 70°C부터 시작하여 85°C 전후에 서 최고의 반응성을 나타내는 것으로 보고되었다(23, 24). P-IgE의 경우 가열에 의해 OVA의 반응성을 80°C부터 급격히 감소하여 85°C부터 변화가 거의 없었고, IGE의 반응성이 매우 약화되었다. 이 결과는 OVA의 항체가 가열처리에 의해 감소한다는 이전의 보고들(16, 17)과 일치하였다. 따라서 M-IgG와 R-IgG에서는 가열처리된 OVA에 대한 항체의 반응성이 급격히 증가하는 것으로 나타났다. M-IgG의 경우 85°C 처리구에서 최고의 반응성을 나타내었으며, 이에 따라 항체반응성이 37°C 처리구에 비해 약 34.7배 정도 높은 값을 나타냈다.

다음 온도에서의 가열처리구에 대한 항체반응성이 점차 감소하였으나, 일반적인의 M-IgG의 epitope는 완전히 파괴되지 않고 오히려 37°C보다 약 20% 정도 항체가 더 반

Table 2. Detected concentration (μg/mL) of ovalbumin in sample solutions heated at the designated temperatures by ELISA individually formatted with the different antibodies

<table>
<thead>
<tr>
<th>Antibodies</th>
<th>37°C</th>
<th>60°C</th>
<th>70°C</th>
<th>75°C</th>
<th>80°C</th>
<th>85°C</th>
<th>90°C</th>
<th>Boiled (100)</th>
<th>Autoclaved (121)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients’ IgE</td>
<td>10.3</td>
<td>9.9</td>
<td>10.5</td>
<td>9.3</td>
<td>9.3</td>
<td>6.1</td>
<td>1.9</td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td>Mouse IgG, monoclonal</td>
<td>11.2</td>
<td>12.1</td>
<td>17.1</td>
<td>12.4</td>
<td>12.4</td>
<td>258.3</td>
<td>346.9</td>
<td>289.9</td>
<td>204.4</td>
</tr>
<tr>
<td>Rabbit IgG, polyclonal</td>
<td>10.3</td>
<td>35.6</td>
<td>171.6</td>
<td>867.4</td>
<td>1,633.6</td>
<td>75.3</td>
<td>13.3</td>
<td>9.3</td>
<td>10.4</td>
</tr>
</tbody>
</table>

Means (n=5).
1 Heat treatment to samples was isothermally processed in the designated temperatures for 15 min.
2 *Means in the same row with different letters are significantly different (p<0.05).
3 Letters in the same column with different letters are significantly different (p<0.05).

Table 3. Detected concentration (μg/mL) of ovalbumin in sample solutions 10 kGy gamma–irradiated after heating at the designated temperatures by ELISA individually formatted with the different antibodies

<table>
<thead>
<tr>
<th>Antibodies</th>
<th>37°C</th>
<th>60°C</th>
<th>70°C</th>
<th>75°C</th>
<th>80°C</th>
<th>85°C</th>
<th>90°C</th>
<th>Boiled (100)</th>
<th>Autoclaved (121)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients’ IgE</td>
<td>1.5</td>
<td>1.2</td>
<td>1.2</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Mouse IgG, monoclonal</td>
<td>49.9</td>
<td>57.4</td>
<td>50.8</td>
<td>52.5</td>
<td>52.5</td>
<td>47.9</td>
<td>43.9</td>
<td>40.3</td>
<td>36.1</td>
</tr>
<tr>
<td>Rabbit IgG, polyclonal</td>
<td>41.4</td>
<td>44.3</td>
<td>64.5</td>
<td>64.5</td>
<td>47.1</td>
<td>39.9</td>
<td>9.2</td>
<td>11.0</td>
<td>7.3</td>
</tr>
</tbody>
</table>

Means (n=5).
1 Heat treatment to samples was isothermally processed in the designated temperatures for 15 min.
2 *Means in the same row with different letters are significantly different (p<0.05).
3 Letters in the same column with different letters are significantly different (p<0.05).

Table 4. Detected concentration (μg/mL) of ovalbumin in sample solutions heated at the designated temperatures after gamma irradiation of 10 kGy by ELISA individually formatted with the different antibodies

<table>
<thead>
<tr>
<th>Antibodies</th>
<th>37°C</th>
<th>60°C</th>
<th>70°C</th>
<th>75°C</th>
<th>80°C</th>
<th>85°C</th>
<th>90°C</th>
<th>Boiled (100)</th>
<th>Autoclaved (121)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients’ IgE</td>
<td>1.8</td>
<td>1.4</td>
<td>1.3</td>
<td>0.9</td>
<td>0.9</td>
<td>0.7</td>
<td>1.0</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Mouse IgG, monoclonal</td>
<td>52.2</td>
<td>69.5</td>
<td>76.4</td>
<td>82.8</td>
<td>82.8</td>
<td>92.6</td>
<td>107.3</td>
<td>119.7</td>
<td>100.5</td>
</tr>
<tr>
<td>Rabbit IgG, polyclonal</td>
<td>23.7</td>
<td>55.8</td>
<td>14.8</td>
<td>8.9</td>
<td>12.5</td>
<td>6.5</td>
<td>15.9</td>
<td>22.7</td>
<td>20.5</td>
</tr>
</tbody>
</table>

Means (n=5).
1 Heat treatment to samples was isothermally processed in the designated temperatures for 15 min.
2 *Means in the same row with different letters are significantly different (p<0.05).
3 Letters in the same column with different letters are significantly different (p<0.05).
Table 5. Optical densities at 340 nm of ovalbumin solution (2.0 mg/mL) treated with the combination treatment of heat and gamma irradiation of 10 kGy

<table>
<thead>
<tr>
<th>Treatment</th>
<th>37</th>
<th>60</th>
<th>70</th>
<th>75</th>
<th>80</th>
<th>85</th>
<th>90</th>
<th>Boiled (100)</th>
<th>Autoclaved (121)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heated</td>
<td>0.013<sup>a</sup></td>
<td>0.023<sup>a</sup></td>
<td>0.033<sup>a</sup></td>
<td>0.026<sup>a</sup></td>
<td>0.069<sup>ab</sup></td>
<td>0.178<sup>ab</sup></td>
<td>0.200<sup>ab</sup></td>
<td>0.210<sup>ab</sup></td>
<td>0.214<sup>ab</sup></td>
</tr>
<tr>
<td>Heated and irradiated</td>
<td>1.124<sup>b</sup></td>
<td>1.185<sup>b</sup></td>
<td>1.193<sup>b</sup></td>
<td>1.314<sup>b</sup></td>
<td>2.121<sup>b</sup></td>
<td>1.960<sup>b</sup></td>
<td>1.841<sup>b</sup></td>
<td>1.841<sup>b</sup></td>
<td>1.683<sup>b</sup></td>
</tr>
<tr>
<td>Irradiated and heated</td>
<td>1.250<sup>b</sup></td>
<td>1.268<sup>b</sup></td>
<td>1.315<sup>b</sup></td>
<td>1.387<sup>b</sup></td>
<td>1.527<sup>b</sup></td>
<td>1.686<sup>b</sup></td>
<td>1.364<sup>b</sup></td>
<td>1.303<sup>b</sup></td>
<td>1.211<sup>b</sup></td>
</tr>
</tbody>
</table>

Means (n=5).

^aHeat treatment to samples was isothermally processed in the designated temperatures for 15 min.

^bMeans in the same row with different letters are significantly different (p<0.05).

^cMeans in the same column with different letters are significantly different (p<0.05).

요 맥

이 연구는 낡백단백질의 알러지성을 알기 위해 강마선 조사된 OVA에 대한 가열처리가 항원성(알러지성) 및 구조 변화에 미치는 영향을 조사하기 위해 수행되었다. OVA 용액 (20 mg/mL을 1) 가열처리; 2) 가열 후 조사; 3) 조사 후 가열처리구로 준비하였다. 시료를 개별적으로 가열처리하였고, 강마선 조사는 10 kGy의 활성조각을 염도를 조사하였다. 재활처리가 있는 원리의 혈청과 OVA에 대해 생성된 단백질제(M-IgG)와 단백질제(R-IgG)를 사용하여 측정된 경간간혈청효소면역법을 사용하여 시료용에 있는 OVA의 항원-항체 반응성을 측정하였다. 일반생성된 OVA에 대한 항체반응성은 R-IgG가 60°C, M-IgG가 70°C여서, 그에 R-IgE의 경우 80°C부터 반응하기 시작하였다. P-IgE는 80°C 이상의 온도에서 가열된 OVA를 잘 인식하지 못했다. 반면에, M-IgG와 R-IgE의 경우 가열처리된 OVA에 대한 항체의 반응성이 급격히 증가하는 것으로 나타났다. 강마선 조사와 가열처리의 부작용의 OVA에 대한 P-IgE의 항체-항체 반응에 미치는 영향은 처리 순서와 관련없이 모든 가열온도에서 가열처리에 의한 큰 변화를 나타내지 않았다. 가열처리와 강마선 조사에서 시료용액의 혈액도가 모두 증가하였고, 가열처리보다는 강마선 조사에 의한 혈액도의 증가가 더욱 높았다. 이 결과들은 가열처리가 강마선 조사에 감소되어 있는 OVA의 알러지성에 큰 영향을 미치지 않는 것을 나타내었다.

감사의 글

본 연구는 과학기술 부 원자력 중합기 연구개발과정의 지원으로 수행되었으며, 그 지원에 감사드립니다.

문헌

3. Langeland, T. and Aas, L.: Allergy to hen's egg white: clin-

