DERIVATIONS ON PRIME RINGS AND BANACH ALGEBRAS

  • Jun, Kil-Woung (DEPARTMENT OF MATHEMATICS, CHUNGNAM NATIONAL UNIVERSITY) ;
  • Kim, Hark-Mahn (DEPARTMENT OF MATHEMATICS, CHUNGNAM NATIONAL UNIVERSITY)
  • Published : 2001.01.01

Abstract

In this paper we show that if D and G are continuous linear Jordan derivations on a Banach algebra A satisfying [D(x), x]x - x[G(x),x] $\epsilon$ rad(A)for all $\epsilon$ A, then both D and G map A into rad(A).

References

  1. Amer. J. Math. v.91 Continuity of derivations on commutative Banach algebras B. E. Johnson
  2. Proc. Amer. Math. Soc. v.8 Derivations in prime rings E. Posner
  3. Proc. Amer. Math. Soc. v.8 Jordan homomorphisms and derivations on semisimple Banach algebras A. M. Sinclair
  4. Canad. Math. Bull. v.24 no.4 Semiprime rings with nilpotent derivations L. O. Chung;J. Luh
  5. Proc. Amer. Math. Soc. v.104 Jordan derivations on semi-prime rings M. Bresar
  6. J. of. slgebra v.156 Centralizing mappings and derivations on prime rings M. Bresar
  7. Rings with Involution I. N. Herstein
  8. Ph. D. thesis Derivations on semiprime rings and Banach algebras S. H. Byum
  9. Bull. Korean Math. Soc. v.28 The range of derications mapping on noncommutative Banach algebras K. W. Jun;B. D. Kim
  10. Derivations on prime rings and Banach algebras Ⅱ H. M. Kim
  11. Proc. Amer. Math. Soc. v.109 Commuting and centralizing mappings in prime rings J. Vukman