디지털 TV 스트림 분석기 구현
정혜진* 김용환**
An Implementation of Digital TV Stream Analyzer
Hye-Jin Jeong* and Yong Han Kim**

요 약
본 논문에서는 디지털 TV 방송 스트림 분석, 검증하기 위한 시스템을 PC 상에서 소프트웨어 기반으로 구현하였다. 저장되어 있는 MPEG-2 트랜스포트 스트림(transport stream, TS) 파일을 입력으로 받아 비트의 위치에서 정보를 추출하는데 이에 따른 프로그램 구조 정보 (program specific information, PSI), TS 헤더, TS 헤더 등 기본 내용을 분석의 내용으로 처리한다. TS 파일을 입력으로 받아 분석 내역을 보는 형태로 관리한다. 또한, 테이터 저장소가 있는 TS 파일과 가장 가까운 프로시저를 다룰 때 필요하다. 본 논문의 분석기는 MPEG-2 비트 스트림 테크닉의 검사 기능을 제공하며, 데이터 방송을 위한 여러 가지 테이터 테이블 기반의 MPEG-2 스트림에 상응하는 기능도 검사한다. 본 논문의 분석기를 이용함으로써 저작권으로부터 방송 스트림을 분석, 검증할 수 있을 뿐만 아니라, 실험실 분석을 위한 대화형 방송 및 데이터 방송을 비트 스트림을 저장하므로 제공할 수 있다.

Abstract
In this paper, we describe a software implementation of a digital TV stream analyzer that can be used for analyzing and verifying digital TV bitstreams on personal computers. It accepts as input MPEG-2 transport streams (TS's) already stored on hard disks and doesn’t require any special hardware. After classifying TS packets into program specific information (PSI), TS section, audio, video, program clock reference (PCR), private data, and null packets, it displays their contents through a graphic user interface along with the syntax elements of the TS header. Also, it displays the decoded 1 frame nearest in time axis the TS packet currently shown. This feature helps pin-pointing the specific location of problematic parts in bitstreams. The bitstream analyzer provides the compliance test of MPEG-2 Systems standard and the data injection functionality with which one can easily insert additional data to existing MPEG-2 bitstreams. Using the resulting system, one can produce at low cost test streams for interactive broadcasting and data broadcasting for laboratory use.

I. 서 론
디지털 방송 시대가 본격화되어 따라 방송사, 수신기 제조 업체, 그리고 디지털 TV 관련 연구기관 등에서 MPEG-2 TS 방식으로 방송을 전송하게 되었다. 방송 시각에서는 송출하는 스트림이 표준에 부합하는지를 검사하여 이를 위해, 수신기 제조업체에서는 개별 수신기 표준을 검증할 때, 표준 스트림 역할을 할지나 모델링을 하기에는 스트림의 특정 부분을 확인하기 위해 수신기를 다룰 수 있다. 또한 연구기관에서는 데이터 방송과 같은 새로운 서비스를 개발할 때에 실험실 내에서 이를 위한 시험 스
트림을 제거하고 규격에 맞게 제작되었는지 검사할 필요가 있다.

현재까지 제공된 TS 분석기들은 하드웨어로 만들어진 것들이 대부분으로 고가이다. 따라서, 디지털 TV 방송 관련 소프트웨어 사업장이나 연구 원반에서는 이용 편리하다.

본 논문의 목적은 디지털 TV 방송용 표준 스트림인 MPEG-2 TS를 분석, 검증하여, 데이터 방송과 같은 새로운 서비스를 위한 시험 시스템을 할 수 있는 시스템을 소프트웨어 기반으로 구현하여 저자회하는 데 있다. 본 논문에서 구현한 분석기는 이미 개발되어 있는 MPEG-2 TS 파일을 입력으로 받아 기존 고가의 분석기가 제공하는 대부분의 분석 기능을 일반 PC 상에 설치된 하드웨어 지원 없이 제공할 수 있다. 또한, 본 논문에서는 스트림의 특징 부분을 영상과 관련하여 확인할 수 있는 프레임 표시 기능, 문제를 일으키는 스트림의 특정 부분을 영상으로 보여주며 확인할 수 있는 테이터 표시 기능 등을 다양한 기능을 추가로 제공한다.

이러한 기능들은 TS로 이송된 데이터 방송을 비트스트림을 제거할 때, 소량의 데이터를 검출할 경우에는 타이밍에 큰 문제가 없으며, MPEG-4 이상으로 부품의 동영상은 데이터 양이 많을 수 있다. 본 논문에서는 이론 스타트림 내의 날짜 정보를 입력하여 입력되고 있는 데이터를 탐색할 수 있는 데로 양이 많은 데이터를 탐색할 경우에도 문제를 줄이기 위한 탐색을 추가하였다. 또한, 스타트림 표시를 수행할 필요가 없도록 해서, 항상 하드웨어를 사용해 만든 비트스트림은 날짜 표시를 많이 포함하고 있으므로 이 방법을 이용하면 간단히 추가 데이터를 할 수 있다. 본 논문에서는 디지털 TV를 위한 MPEG-4 데이터 및 각종 부가 데이터를 할 수 있도록 하였다.

본 논문의 구성은 다음과 같다. I장에서는 TS 분석기를 구현하는 데 관련된 표준에 대해서 약속하고, III장에서는 분석기의 실제 구현 및 구현에 대해 설명하였다. IV장에서는 구현한 분석기를 이용한 실험 결과에 대해 설명하였으며, 마지막으로 V장에 결론을 제시하였다.

II. 디지털 TV 스트림 관련 표준

I. MPEG-2 시스템 표준 (2)

MPEG-2 시스템 표준에서는 흔히 텔레비전, 음성 데이터 혹은 그 외의 데이터들을 전송이나 저장에 적합하도록 하나의 스트림으로 다중화하는 방식에 대해서 규정한다. 이러한 다중화 과정은 다음에 따라 두 가지로 나눌 수 있는데, 그 중 하나가 TS(transport stream) 규격이 다른 하나가 PS(program stream) 규격이다. TS 규격은 스타트림 전송, PS 규격은 스타트림 저장을 주목으로 한다. TS는 주로 디지털 방송에서 사용하고, PS는 디지털 다용량 디스크(digital versatile disk, DVD) 등에 사용된다. 그림 1에 MPEG-2 시스템 표준의 개요를 보여주며, 본 논문에서는 TS만을 다룬다.

MPEG-2 TS는 그림 2에 보이는 188 바이트의 헤더들로 구성된다. 각 헤더는 4바이트의 고정 헤더와 가변 길이 정통필드(adaption field), 그리고 유료화(payload)로 구성된다. 헤더는 포함되어 있는 패킷 식별자(packet identifier, PID)는 다중 프로그램 TS로부터 특정 프로그램을 선택하여 오디오, 비디오, 텍스트 등으로 압축화되는 데에 필수적인 정보이다. PID 목록을 전달하기 위한 태그는 TS에 포함된 모든 프로그램에 대한 정보를 제공하기 때문에, 이것을 프로그램 구명 정보(program specific information, PSI)라고 한다. PSI에는 프로그램 연결 테이블(program association table, PAT), 프로그램 엽 테이블(program map table, PMT), 네트워크 정보 테이블(network information table, NIT), 조건부 접근 테이블(conditional access table, CAT) 등이 포함된다.
access table, CAT 등이 있다. 오디오 비디오 동기를 위해서는 시간 정보가 필요하며, 이를 타임 스텝으로 한다. 타임 스텝에는 복호 타임 스텝프(decoding time stamp, DTS), 표시 타임 스텝프(presentation time stamp, PTS)의 두 가지 종류가 있다. DTS는 데이터가 복호화 시각을 나타내고, PTS는 복호화 데이터가 표시될 시각을 나타낸다. 하지만 이러한 정보들은 오디오 또는 비디오를 알맞은 ES(elementary stream) 데이터에 포함되어 있지 않기 때문에, 이러한 정보를 추출한 새로운 표준이 필요하다. 이를 급속 단위 별로 배열한 것은 PES(packetized elementary stream)로 한다. 따라서, ES는 우선 PES로 만들어진 후, 다시 188 비트의 TS 때기로 나누어진다.

2. MPEG-4 시스템 표준

MPEG-4 시스템 표준에서는 전송 받은 개체별 형상, 음성 데이터를 하나로의 화면으로 구성하여 표시하는 단말 기 규격을 정의하고 있다. 개별적으로 전송받은 개체들은 이를 화면에 구성하기 위해 사용하는 형상과 음성 데이터와 함께 요소를 구성하는 object descriptor의 개체 시플릿(object descriptor)이다. 두 가지 시플릿은 초기 개체 시플릿(initial object descriptor, IOD)를통하여 지정된다. 정면 시플릿은 개체들의 시공간적 위치를 지정하는 역할을 하고, 개체 시플릿은 실제 시플릿에 정의된 개체 정보와 실제로 사용할 영상 또는 음성 데이터를 연결해 주는 역할을 한다. 정면 시플릿은 이 간 형태로 구조화되어 전송되므로 BFS (binary format for scenes)라고도 한다.

MPEG-4의 TS로 패킷화하여 전송하기 위한 표준은 MPEG-2 시스템 AMD이다. MPEG-4 데이터를 TS 패킷화하는 방법에는 사전(section)과 PES의 두 가지가 있다. MPEG-4 IOD의 경우는 PMT 내에 사전을 삽입하 는 것에 IOD를 사용자로 전송한다. 정면 시플릿과 개체 시플릿은 탐사나 PES 패킷의 형태로 전송하고 오디오 비디오 개체의 경우는 항상 PES 패킷의 형태로 TS 패킷화하여 전송한다.

MPEG-4 시스템 표준은 다음에서 디스플레이 방송을 위한 오비데이터 화면을 쉽게 구성할 수 있으며, 시청자의 국어적 상호작용도 가능하다.

3. PSI

PSI(program and system information protocol)는 ATSC(Advanced Television System Committee)에서 정의하고 있는 규격으로, 병합되는 MPEG-2 TS에서의 경로와 TS에 포함된 프로그램에 대한 안내를 전송하기 위해 사용된다. 시스템 시간 태그(time system table, STT), 주 단계 태그(master guide table, MGT), 가상 채널 태그(virtual channel table, VCT)는 TS에 수록될 때 정해진 제목, 즉 (x)FFB를 사용하고, 이벤트 정보 태그(event information
표, EIT) 로 확장 분문 목록(extended text table, ETT) 을 주 안내 표에 기록된 PID를 사용하여 TS에 수록된 다. PSI점에는 PSI와 중복된 정보도 포함되어 있다.

4. DSM-CC 규격[3]

DSM-CC(digital storage media command and control) 는 인터페이스 서비스를 원격 제어하기 위한 규격이다. DSM-CC의 여러 가지 기능 중 UN 다운로드(user-to-network download) 매체는 데이터 방송에 사용할 수 있다. UN 다운로드 매체를 전달하는 방법에는 호흡 제어 방식 다운로드(flow-controlled download), 비 호흡 제어 방식 다운로드(non-flow-controlled download), 데이터 카 레럴(data carousel) 등 세 가지가 있다. 호흡 제어 방식 다운로드는 하나의 서버에서 하나의 클라이언트로 데이터 전송을 호흡 제어 방식으로 진단하는 것과, 비 호흡 제어 방식 다운로드는 하나의 서버에서 복수의 클라이언트로 대상으로 데이터 전송을 진단하는 것이며, 마지막으로 데이터 카레럴 방식은 서버에서 주기적으로 데이터를 전송하 면 클라이언트마다 자신이 필요한 일부분의 데이터만을 진 단받아 사용하는 방식이다. 이 중 데이터 방송에 사용되는 것은 비 호흡 제어 방식 다운로드와 데이터 카레럴이다.

5. TS 적합성 시험 규격

III. 분석기의 설계 및 구현

1. 구조 설계

구현된 TS 분석기의 기본은 크게 세 가지로, TS 분석 기능, TS 적합성 시험 기능 그리고 데이터 삽입 기능 등이다.

1.1 TS 분석 기능

그림 3은 구현된 분석기의 모듈 구성도이다. 분석기의

그림 3. TS 분석기의 확폭도

Fig. 3. Block diagram of TS analyzer

그림 4. TS 판별 모듈의 흐름도

Fig. 4. Flow chart of TS detection module
방식으로 제시한다. 제시도 횟수, 즉 몇 번이나 파일 로
인터를 이용하였는지를 카운트로 세어 그 값이 한 패킷
사이즈, 즉 188바이트를 초과할 때는 입其他玩家의 스택트램가
이 아닌 것으로 판단한다.

그림 5는 파일에서 읽어들인 TS로부터 PSI를 분석
하는 모듈을 나타낸다. 188바이트의 읽어들으면서 PID가
0인 패킷은 특별한 기호질이 PAT을 체인 먼저 찾는다. PAT를 분
석하여 각 프로그램에 대응되는 PMT 패킷을 알아낸다.
각 프로그램 에 대해서 해당 PMT 패킷을 갖는 패킷을
 찾아 PMT 분석 모듈로 분석한다. 그 결과, 각 자료들
인 TS가 어떤 데이터들로 구성되어 있는지에 관한 정
보를 수신함 정보를 출력한다. 본 논문에서는
한 TS 파일 내에서는 PSI 정보의 변동이 없다고 가정
하였다.

TS 패킷 분석 과정은 그림 6에 보인다. TS 해석 분석
은 PSI 분석 모듈을 통해 인어내 정보를 통해 TS 패킷의
종류를 구별한다. 즉, PMT에 기록된 PID 값을 참조하
여 현재 분석 중인 TS패킷의 유요부가 PSI로 인한 PES
패킷인지 구별해 난다. 만약 PID가 0x0147에 일정부가

(null) 패킷으로 처리한다. 이를 위해 항상 PSI 분석 모듈
은 가장 우선 수행되어야 한다.

시스템 구축을 위해 사용하는 시스템 정보를 클록
참조값은 PID가 PCR_PID인 TS 패킷의 적응 필드
(adaptation field) 내에 있다. 그림 6과 같이 PID가
PCR_PID이고 클록 참조값 참조(PCR_flag)가 1일 때
클록 참조값이 존재한다. PCR_PID는 다른 ES의 PID와
동일할 수 있다.

PES 패킷이 TS 패킷화될 때, TS 유요부하 보다는 신
PES 패킷은 여러 개의 TS 패킷으로 나누어진다. 이 때
첫 번째, 유요부하 시작 지시자(payload unit start
indicator)가 1로 설정되고 나머지 패킷들은 0으로 설정된
다. 새로운 PES 패킷은 새로운 TS 패킷에서만 시작할 수
있다. 따라서 유요부하 시작 지시자가 1인 TS 패킷은 한
상 PES 패킷 해체를 갖고 있는 PES 패킷의 조건을 유요
부하에 응할 수 있다. PES 해체가 시작될 때, 유요부하 시작
지시자가 1로 설정되지만 하면 방식은 PES 패킷 해체 조건 다
르다.

TS 패킷이 생성될 때 TS 패킷 해체의 연속 카운터

그림 5. PSI 분석 모듈의 초록도
Fig. 5. Flow chart of PSI analysis module
그림 6. TS 패킷 분석 모듈의 효용도
Fig. 6. Flow chart of TS packet analysis module

(continuity_counter) 필드 값은 오디오, 비디오 등 데이터 종류별로 1씩 증가한다. 이 필드는 4비트로 0부터 15까지의 값 중 15 값을 나타내는 0으로 순환된다. 따라서 연속 카운터 값을 이용하여 전송된 TS 패킷 순서를 이해할 수 있으며 중복 패킷도 제거할 수 있다.

전송 에러 지시자(transport_error_indicator)는 채널 측에서 알려주는 정보로서 이 필드가 1이라면 현재 TS 패킷이 손상되지 않은지를 나타낸다. 전송 필드 제어(adaptation_field_control)는 작동 필드의 유효범위의 존재 유무를 알려주는 필드이다. 전송 필드는 총 4번의 제어가 2개 3개로, 유효부의 1과 3번 첫 번째 필드가 존재한다. 따라서 작동 필드 제어가 0 또는 2일 때는 유효부가 존재하지 않는다. 작동 필드는 파일결속 정보가 존재하는 곳이어야 판단에 중요한 의미를 갖는다.

TS 패킷의 유효부에 어떤 정보가 들어있는지는 PID 값을 확인함으로써 알 수 있다. 현재 유효부에 들어있지 않은 스트림의 종류는 크게 세션(section)과 PES 패킷으로 구분할 수 있다. 세션 데이터는 세션 분석 모듈로 분석하고, PES 패킷 데이터는 PES 패킷 해석 모듈로 분석한다. 이 때 유효부의 시작 지점이 1인 경우에는 PES 패킷 해석을 분석한다. 여러 TS 패킷이 결합 있는 PES 패킷 해석을 반복하여 분석하려면 PES 패킷 출력부를 이용한다.

1.2 TS 적합성 심층 기능
CAT 시험, NIT 시험, 시스템 시험 등은 이것을 포함하고 있는 TS에서 적합하도록 이 세 가지 시험은 선택 사항이다. 다른 시험은 모두 일반적인 TS에 적용하도록 한다.

위성 시스템에서 왔으며 188 비트로 이루어진 PSI를 추가한다. 이 때 PSI를 포함한 TS 패킷이 적합한 해석을 통해 필드를 갖고 있는 것이 필요하고 오류 포함 여부를 검사한 후 오류가 없고 적합한 태그에 적절 필드를 가진 TS 패킷면만을 활용하여 PSI를 분석한다. 다음 단계로, 처음부터 다시 188 비트의 헤더들이면서 TS 해
다 시험, 적응 필드 시험을 모든 채널에 적용한다. 이 단계의 조건은 그림 7에 나타내었다. 그리고 최표본화 증폭에 따라 PES 패턴을 포함하고 있는 데이터의 경우는 PES 헤더 시험, 데이터 헤더의 경우는 각각의 데이터 헤더의 경우를 시험한다. 그리고 시각을 포함하고 있는 데이터의 경우는 서식 시험을 시험한다. 도중에 적절한 바이트가 맞지 않은 경우에는 이에 대한 오류 메시지를 출력한 후 다음 시각 바이트를 찾아 계속 시험을 한다.

 불연속 시험은 불연속 지시자(discontinuity indicator) 시험, 시간 지속 불연속(time base discontinuity) 시험, 그리고 연속 카운터 불연속(continuity counter discontinuity) 시험으로 나뉜다. 만약 데이터의 불연속 시험은 TS 헤더 시험에 시행되고, 나머지 불연속 지시자 시험과 같은 기 횟 불연속 시험은 적응 필드 시험에 시행된다. 임의 접근 시험은 PES 헤더 시험에 시행된다. 시출 시험은 각종 시설을 포함하는 PMT 시험, CAT 시험, 그리고 NIT 시험에서 시출을 포함하는 경우 함께 시행한다.

1.3 데이터 채집 기능
본 논문에서 구현한 데이터 채집 기능의 범위는 PES 단계나 ES 단계에서부터 새로운 TS를 만들어내는 것이 아니라 비디오 변환으로 저장된 TS에 대한 변환 및 데이터 채집을 탑재하고 있는 것이다. 모든 하드웨어 인코더에 의해 제작된 TS에는 출력 비트를 고정 전체로 조절하기 위해서 난 패턴이 다수 포함되어 있다. 본 논문에서는 기존 TS에 포함된 난 패턴을 실행하고자...
하시는 데이터로 대치하는 방식을 사용하였기 때문에 기존 TS의 태양의에 변동이 없다. 이를 데이터 삽입(data injection)이라고 부른다.
성립되는 데이터에는 주기적인 것과 일회적인 것이 있다. 전자로는 PAT, PMT, PSI/SIP 등의 시스템 정보나 데이터 예측 등을, 회사로는 방송제크나 베어 버돈 등을 들 수 있다. 이런 데이터를 종속에 따라 데이터의 삽입 방법 이 다르다. NIT는 네트워크 계층에서 실행될 내용이고, CAT7은 스키마상에 위한 사람이 때문에 본 논문에서는 다루지 않는다.
데이터 삽입의 결과로 PAT 또는 PMT가 수정되어야 할 경우에는 수정된 내용으로 TS 내의 PAT 또는 PMT를 대체한다. 기존 TS에서 PSI/SI 정보가 없을 경우에는 PSI/SI, TS 첫 번째 행으로 만약에 PMT 다음에 삽입한다. 따라서 PSI/SIP, PMT와 이전까지 0.7초 이내의 간격으로 반복하여 삽입한다. PSI와 PSI/SIP, 0.7초 이하의 주기로 삽입하는 이유는 주기적으로 전화가 인가될 후부터 프로그램 정보를 획득하기까지의 시간을 허용하기 위한 것이다.
MPEG-4 부가 데이터에는 두 가지 종류가 있을 수 있다. 첫째는 다음으로 모드로 넘어가 프로그램과 연관된 부화면이나 데이터를 미리 준비한 후 사용자의 요구에 의해 표시하는 방식이다. 두 번째는 스크립팅 모드로서 프로그램에 따라 표시되는 방식이다.
MPEG-4 부가 데이터는 TS에 삽입할 경우는 삽입 위치 결정이 중요하다. 다운로드 모드로 예를 들어, 만약 스크립팅을 다루고 있는 프로그램이라고 한다면 실제로 나올 때 그 정보에 수신 완료된 MPEG-4 부가 데이터가 나타나는 위치의 표시라고 하여 사용자가 그 위치에 표시하면 센서와 관련된 정보를 MPEG-4 부가 데이터로 보여주고 따라서 먼저 기본 텔레비전을 정확히 삽입할 곳, MPEG-4 부가 데이터로 표현한 정보를 프로그램 내부에 일정한 위치에 표시할 수 있도록 하는 방법이다.
스트리밍 모드의 경우에는, 뉴스 프로그램의 경우 다시나온 서가 두 화면의 내용을 짝조적으로 상호에 설정하고 있는 경우가 많다. 이와는 기존 TS의 프로그램 내용과 MPEG-4 데이터가 주석으로 어려운 관계로 통기성이 어렵다. 그러므로, 주 프로그램의 PTS와 MPEG-4 데이터의 PTS가 일치하여야 한다.

주 화면의 내용의 동기시각이 맞지 않으면 있을 경우, 스트림 동기 기능에서 제공하는 1 프레임 표시 기능을 이용하여 위치를 정정한 후, 주변의 다른 채널과 비교하여 삽입한다.

DSM-CC 데이터의 경우는 일정한 간격으로 넘기는 것으로 기존 위치를 정하여 그 위치 근처에 존재하는 네 파일의 위치에 삽입한다.

만약 네 파일이 거의 없는 TS의 경우에는 데이터를 삽입 후 전체 스크립의 시간정보를 수정해야 한다. 본 논문에서는 이 기능은 다루지 않았다.

2. 구현

그림 8은 본작가의 초기 화면이다. 본작가는 매뉴, 메뉴의 메뉴에서 구성된다. 메뉴에는 본작가가 제공하는 모든 기능들이 다 들어 있고 메뉴 바에는 메뉴의 기능을 좀 자주 보이는 기능들로 구성되어 있다. 메뉴 화면은 본작가를 동작시킬 때 여러 가지 메뉴 정보를 보여준다.

그림 8. 본작가의 초기 화면

Fig. 8. Start-up frame of the analyzer
통과 PID를 보여준다. 2번 장은 현재 위치, 즉 3번 장에서 표시된 위치가 있는 한 TS 패킷에 대한 분석 결과를 보여준다. 즉, 헤더 내용, PSI 내용, 그리고 PES 헤더 내용 등을 표준 식별자로 10진수와 16진수 로 변환하여 분석하기도 한다. 3번 장은 전체 장들이 몇 개의 TS 패킷으로 구성되어 있는지에 관한 정보와 현재 분석 중인 장의 위치를 보여준다. 그리고 편하는 위치 값을 입력함으로써 원하는 위치로 이동하여 분석할 수 있게 하는 기능을 제공한다. 4번 장은 현재 위치의 TS 패킷 188바이트를 16진수로 보여준다. 분석기관의 가능은 다음과 같다.
① TS 결합
ünün 요약

- TS 패킷 내용 (그림 10 참조) 및 PES 헤더 내용 표시 (그림 10 참조)
- DSM-CC 헤더 비례형 내용 표시
- IP 헤더 표시
- PSIP 색상 표시
- 일부 패킷에 비례형 보기 (그림 11 참조)
- 현재 패킷에 대응되는 프레임 보기 (그림 12 참조)

Graph 10: PES Header Analysis

Fig. 10. Analysis of PES header

<table>
<thead>
<tr>
<th>NAME</th>
<th>BITS</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>packet_start_code_prefix</td>
<td>24</td>
<td>0x1</td>
</tr>
<tr>
<td>stream_id</td>
<td>8</td>
<td>0x0</td>
</tr>
<tr>
<td>PES_packet_length</td>
<td>24</td>
<td>0xd0</td>
</tr>
<tr>
<td>1D</td>
<td>2</td>
<td>0x2</td>
</tr>
<tr>
<td>PES_scrambling_control</td>
<td>2</td>
<td>0x0</td>
</tr>
<tr>
<td>PES_priority</td>
<td>1</td>
<td>0xd0</td>
</tr>
<tr>
<td>data_alignment_indicator</td>
<td>1</td>
<td>0x1</td>
</tr>
<tr>
<td>copyright</td>
<td>1</td>
<td>0x0</td>
</tr>
<tr>
<td>original_gr_copy</td>
<td>1</td>
<td>0x1</td>
</tr>
<tr>
<td>PES(DWORD)</td>
<td>2</td>
<td>0x2</td>
</tr>
<tr>
<td>ESCR_flag</td>
<td>1</td>
<td>0x0</td>
</tr>
<tr>
<td>ES_rate_flag</td>
<td>1</td>
<td>0x0</td>
</tr>
<tr>
<td>DSM_trick_mode_flag</td>
<td>1</td>
<td>0x0</td>
</tr>
<tr>
<td>additional_copy_info_flag</td>
<td>1</td>
<td>0x0</td>
</tr>
<tr>
<td>PES_CRC_flag</td>
<td>1</td>
<td>0x0</td>
</tr>
<tr>
<td>PES_extension_flag</td>
<td>1</td>
<td>0x0</td>
</tr>
<tr>
<td>PES_header_data_length</td>
<td>8</td>
<td>0x5</td>
</tr>
<tr>
<td>'010'</td>
<td>4</td>
<td>0x2</td>
</tr>
<tr>
<td>PES_DATA[2..30]</td>
<td>3</td>
<td>0x0</td>
</tr>
<tr>
<td>marker_bit</td>
<td>1</td>
<td>0x1</td>
</tr>
<tr>
<td>PES[36..45]</td>
<td>15</td>
<td>0x33b</td>
</tr>
<tr>
<td>marker_bit</td>
<td>1</td>
<td>0x1</td>
</tr>
<tr>
<td>PES[46..495]</td>
<td>15</td>
<td>0x6495</td>
</tr>
<tr>
<td>marker_bit</td>
<td>1</td>
<td>0x1</td>
</tr>
<tr>
<td>stuffing_byte</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PES_packet_data_byte</td>
<td>189288</td>
<td></td>
</tr>
</tbody>
</table>
그림 11. 많은 패킷을 이미지로 보기 (a) 작은 블록으로 보기 (b) 큰 블록으로 보기
Fig. 11. Image view of many packets (a) Small block view (b) Large block view

이 중 “많은 패킷을 이미지로 보기 기능”과 “현재 패킷에 대응되는 1 프레임 보기” 기능에 대해서는 다음 IV장에 더 상세히 설명하도록 한다.
4. 실험 결과

실험에서는 인텔(Intel)의 코어골드 333MHz의 CPU가 장착된 개인용 컴퓨터를 사용하였다. 프로그램 동작을 위한 운영체제는 Windows NT 4.0을 사용하였고, 구현에 사용한 소프트웨어는 마이크로소프트(Microsoft)의 Visual C++ 6.0이다.

본작에 사용한 스트림은 현재 시험 방송중인 지상파 디지털 방송 프로그램을 수신하여 저장한 것이다. 그림 12에 표시된 영상을 프로그램 화면은 현재 표시되고 있는 TS 페이입니다 가정 가까운 위치에 있는 1 프레임을 저장하므로 표시한 것이다. 1 프레임 표시 기능은 동기 arbitration기능의 끝이 필요한 부가 데이터의 산입 위치 설정과 오픈 부분 위치 과학에 특화 유용하게 사용될 수 있다.

적합성 시험 기능은 테스트 단위로 테스트 해더의 선택스 전을 보여준다. 적합한 경우에 부속된 표의 위치가 해더, 적합해드, 유효부가 중 어디에 속하는지를 알려 주고 부속된 이유를 표시한다. 이 기능은 기존 개발된 적합성 시험기의 기능과 유사하나 항상된 사용자 인터페이스를 제공한다.

TS 적합성 시험 화면은 그림 13과 같다. 이 시험에 사용한 스트림은 현재 시험 방송중인 지상파 디지털 방송 프로그램을 수신하여 저장한 것이다. 그림 12에 표시된 영상을 프로그램 화면은 현재 표시되고 있는 TS 페이입니다 가정 가까운 위치에 있는 1 프레임을 저장하므로 표시한 것이다. 1 프레임 표시 기능은 동기 arbitration기능의 끝이 필요한 부가 데이터의 산입 위치 설정과 오픈 부분 위치 과학에 특화 유용하게 사용될 수 있다.

적합성 시험 기능은 테스트 단위로 테스트 해더의 선택스 전을 보여준다. 적합한 경우에 부속된 표의 위치가 해더, 적합해드, 유효부가 중 어디에 속하는지를 알려 주고 부속된 이유를 표시한다. 이 기능은 기존 개발된 적합성 시험기의 기능과 유사하나 항상된 사용자 인터페이스를 제공한다.

그림 12. 지상파 방송 스트림 분석 화면
Fig. 12. Analysis frame for terrestrial broadcasting stream

그림 13. TS 적합성 시험 예
Fig. 13. An example of TS compliance test
유단 TS는 시험을 위해 고의로 오류를 삽입한 스트림이 다. 여기서는 PMT를 삭제함으로써 잃어버린 TS 패킷의 헤더와 유료부가, 즉 PMT에 예가가 포함되어 있음을 알 수 있다. 이 예제는 시작 바이트 위치 오류가 포함되어 있다. 즉, 세 번째와 네 번째 TS 패킷 사이에 알 수 없는 데이터가 186 바이트 포함되어 있다. 그림 15에 보인 바와 같이 이 경우에는 시작 바이트가 얼마나 후에 나타나는지 표시하고, 부적합한 패킷에 대해서는 부적합한 이유가 표시된다. 예를 들면, 첫 번째 TS 패킷 내부의 암호화 복제(transport_scrambling_control)가 1인 것은 잘못된 것이다. 매니폴드는 스크램블링이 되지 않도록 표준에서 규정되어 있기 때문이 다.

데이터 삽입 실험은 기존 MPEG-2 TS 과정에 대화 형 방식 및 데이터 방송을 위한 각종 부가 데이터를 삽입하고 그 결과를 확인하는 과정으로 진행되었다. 시청자와 상호작용이 가능하도록 MPEG-4 시스템 도중에 이동하여 대화형 서비스를 위한 오버레이 화면을 구성하고, 이를 MPEG-4 비디오스트림화하여 MPEG-2 TS에 실었다. 삽입한 데이터를 수신 TS 메개체화로, 본 콘텐츠의 총론의 보조 데이터의 경우, 시청자가 수신한 내용을 보고 제보 데이터를 요구하기 전에 관련 데이터가 수신기에 도달할 수 있도록 삽입 위치를 산정하였다. 즉, 수신한 내용에 저장되는 TS 패킷 위치 이전에 관련 데이터를 모두 삽입하였다. 이로 인해 본 콘텐츠의 총론에 두 데이터를 삽입할 때, 본 논문에서 개발한 스트림 분석기의 "세계 그레미에 대응되는 Video 프레이밍 보정" 기능을 이용하면 삽입 위치를 쉽게 명확할 수 있다. 본 논문에서는 MPEG-4 비디오 코덱들은 PES 형태로 삽입하였다. 주요, 음성 정보, 뉴스, 방송과 같은 콘텐츠 독립적인 부가 데이터는 XML 구현에 맞춰 DSM-CC 데이터 캐리어에 넣은 후 TS 메개체화하여 삽입하였다.

데이터 삽입 결과를 확인하기 위해 두 가지 방법으로 실험을 하였다. 우선 그림 1에 보신 바와 같이, 본 논문에서 구현한 TS 분석기의 결과 중 알 수 없던 데이터가 있으면서 데이터 삽입 전의 TS와 데이터 삽입 후의 TS를 비교해 보았다. 그림 11에서 각각의 세 부분의 TS 패킷을 나타내며, 네 패킷은 같은 색으로 표시되어 있다. 데이터를 삽입하기 전과 후에 그림은 비교해 보면서, 네 패킷의 위치에 데이터가 삽입된 것을 확인할 수 있다.

그림 14. 데이터 삽입 전후의 많은 패킷을 이미지로 보기
(a) 데이터 삽입 전 (b) 데이터 삽입 후
Fig. 14. Image view of many packets before and after data injection (a) Before data injection (b) After data injection
정보, 주석 정보 등을 표시할 수 있다.
실험 결과, 본 논문에서 부가 데이터를 삽입하여 제작된 TS가 MPEG-2 시스템의 규격을 만족하며, 대화형 TV 제작기기로도 적합한 바와 같이 재생할 수 있었다.

V. 결 론
본 논문에서는 개인용 컴퓨터 환경에서 TS를 분석, 결 정하고 부가 데이터를 삽입할 수 있는 시스템의 구조를 설계하고, 이를 구현한 후 동작을 검정하였다. 이 시스템은 하드 디스크에 이미 저장된 TS 파일을 입력으로 받아들이며, 특별한 하드웨어를 필요로 하지 않는다. 따라서, 본 논문에서 구현한 스크립트 분석기를 이용하면, 제작용으로 디지털 TV 스크립트 분석기로 사용할 수 있으며, 새로운 대화형 및 데이터 방송 서비스를 시험하기 위한 빠르고 쉽게 개발할 수 있다.

이후 MPEG-2 시스템 표준 뿐만 아니라, MPEG-2 비디오, AAC 오디오 등의 미디어 스크립트에 대한 분석이 추가되어야 할 것이다. 또한, 각국의 대화형 방송 및 데이터 방송 표준에 근거하여 부가 데이터에 대한 분석 기능도 추가되어야 할 것이다.

참 고 문 헌
저자 소개

정 해 진
1999년 2월 : 서울서울대학교 전자공학과 (공학사)
2001년 2월 : 서울서울대학교 대학원 전자전기공학부 (공학석사)
2003년 11월 ~ 현재 : (주)디지털스튜디오 울타리 연구원
주관실내외 : 디지털 방송

김 용 한
1982년 2월 : 서울대학교 공과대학 재학중학과 (공학사)
1984년 2월 : 서울대학교 대학원 재학중학과 (공학석사)
1990년 12월 : 미국 Rensselaer Polytechnic Institute 전기·전산·시스템공학과 (공학석사)
1991년 10월 ~ 1992년 9월 : 일본 NTT 휴면인터넷연구소 책임연구원
1990년 8월 ~ 1996년 7월 : MPEG-Korea 외장
1990년 3월 ~ 현재 : 서울서울대학교 공과대학 전자전기공학부 부교수
주관실내외 : 네트워키 세션, 방송영상, 디지털TV, 인터넷 방송