The Electrical Properties and Residual Stress of Pb(Zr,Ti)O$_3$ Piezoelectric Thin Films fabricated by 2- Step Deposition Method

2단계 증착법으로 제조된 Pb(Zr, Ti)O$_3$압전 박막의 전기적 특성 및 잔류 응력에 관한 연구

  • Kim, Hyuk-Hwan (Department of Materials Science and Engineering, KAIST,) ;
  • Lee, Kang-Woon (Department of Materials Science and Engineering, KAIST,) ;
  • Lee, Won-Jong (Devices& Materials Lab., LG Electronics Institute of Technology.) ;
  • Nam, Hyo-Jin (Department of Materials Science and Engineering, KAIST,)
  • 김혁환 (한국과학기술원 재료공학과) ;
  • 이강운 (한국과학기술원 재료공학과) ;
  • 이원종 (LG전자기술원 소자재료연구소) ;
  • 남효진 (한국과학기술원 재료공학과)
  • Published : 2001.09.01

Abstract

High quality PZT piezoelectric thin films were sputter- deposited on$ RuO_2$/$SiO_2$/Si substrates by using 2-step deposition method. As the first step, PZT seed layers were fabricated at a low temperature($475^{\circ}C$ ) to form a pure perovskite phase by reducing the volatility of Pb oxide. and then, as the second step, the PZT films were deposited at high temperatures ($530^{\circ}C$~$570^{\circ}C$) to reduce the defect density in the films. By this method, the pure perovskite phase was obtained at high deposition temperature range ($530^{\circ}C$~$570^{\circ}C$) and the superior electrical properties of PZT films were obtained on $RuO_2$substrate : 2Pr : 60$\mu$C/$\textrm{cm}^2$, $E_c: 60kV/cm, \;J_t: 10^{-6}A/cm^2\; at\; 250kV/cm$. The residual stress of PZT films fabricated by the 2-step deposition method was tensile and below 150MPa. It was attempted to control the residual stress in the PZT films by applying a negative bias to the substrate. As the amplitude of the substrate bias was increased, the residual tensile stress was slightly decreased, however, the ferroelectric properties of PZT films were degraded by ion bombardment.

References

  1. T. Mihara, H. Watanabe and C. A. Araujo, Jpn. J. Appl. Phys., 33, 5281, (1994) https://doi.org/10.1143/JJAP.33.5281
  2. H.J. Nam : Ph. D. thesis, KAIST, R. O. Korea, (1998)
  3. B. Jaffe, W.R. Cook, JR. and H. Jaffe : Piezoelectric Ceramics, p.272-279, Academic Press Inc., England, (1971)
  4. G.A.C.M. Spierings, G.J.M. Dormans, W.G.J. Moors, M.J.E. Ulenaers and P.K. Larsen, J. Appl. Phys., 78, 1926 (1995) https://doi.org/10.1063/1.360230
  5. S.K. Dey : Ferroelectric Thin Films : Synthesis and Basic Properties, p.330, eds. C.P. de Araujo, J.F. Scott and G.W. Taylor, Gordon and Breach, Netherlands, (1996)
  6. Y. Xu :Ferroelectric Materials and Their Applications, North-Holland, Netherlands, (1991)
  7. H.N. Al-Shareef and A.I. Kingon : Ferroelectric Thin Films : Synthesis and Basic Properties, p.195,eds. C.P. de Araujo, J.F. Scott, and G.W. Taylor, Gordon and Breach, Netherlands, (1996)
  8. T. Nakamura, Y. Nakao, A. Kamisawa and H. Takasu, Jpn. J. Appl. Phys., 33, 5027, (1994)
  9. Y. Park, J.K. Lee, I. Chung and J.Y. Lee, Jpn. J. Appl. Phys., 38, 6801 (1999) https://doi.org/10.1143/JJAP.38.6801
  10. H.J. Jung and T.S. Kim, J. Appl. Phys., 79(12), 9245 (1996) https://doi.org/10.1063/1.362599
  11. R. Bruchhaus, H. Huber, D. Pitzer and W. Wersing, Proc. of the 3rd Internaional Symposium on Integrated Ferroelectrics, 453, (1991)
  12. S.B. Desu, C.H. Peng, L. Kammerdiner, P.J. Schuele, Mat. Res. Soc. Symp. Proc., 200, 319, (1990)
  13. H.N. Al-Shareef, O. Auciello and A.I. Kingon, J. Appl. Phys., 77(5), 2146 (1995) https://doi.org/10.1063/1.359572
  14. H.N. Al-Shareef, K.R. Bellur, O. Auciello and A.I. Kingon, Thin Solid Films, 256, 73, (1995) https://doi.org/10.1016/0040-6090(94)06318-4
  15. D. Vijay, C.K. Kwok, W. Pan, I.K. Yoo and S.B. Desu, Proc. Of the 8th IEEE International Symposium on Applications of Ferroelectrics, 408, (1992)
  16. R.W. Schwartz, R.A. Assink and T.J. Headly, Mat. Res. Soc. Symp. Proc., 243, 264, (1992)
  17. G. Teowee, J.M. Boulton, S.C. Lee and D.R. Unlmann, Mat. Res. Soc. Symp. Proc., 243, 255, (1992)
  18. D.J. Taylor, J. Geerse and P.K. Larsen, Thin Solid Film, 263, 221, (1995) https://doi.org/10.1016/0040-6090(95)06576-8
  19. W.T. Petuski and D.A. Richardson, Proc. of the 3rd International Symposium on Integrated Ferroelectric, 571, (1991)
  20. I. Chung, J.K. Lee and K.I. Yoo, Integrated Ferroelectrics, 13, 97, (1996) https://doi.org/10.1080/10584589608013084
  21. R.E. Leuchtner, K.S. Grabowski, D.B. Chrisey and J.S. Horwitz, Proc. of the 3rd International Symposium on Integrated Ferroelectrics, 72, (1991)
  22. H.J. Nam : internal report of LG Electronics Institute of Technology, (2000)
  23. E.J. Lee, J.W. Kim and W.J. Lee, Jpn. J. Appl. Phys., 37, 2634, (1998) https://doi.org/10.1143/JJAP.37.2634
  24. S.K. Hong and H.J. Kim, J. Appl. Phys., 80, 822, (1996) https://doi.org/10.1063/1.362891
  25. J.A. Taylor : J. Vac. Sci. & Technol., A9, 2464, (1991)
  26. V. Orlinov and G. Sarov, Thin Solid Films, 68, 333, (1980) https://doi.org/10.1016/0040-6090(80)90266-7
  27. D.L. Smith : Thin-film deposition:principles and practice, p. 196, McGraw-Hill Inc., Singapore, (1997)
  28. M. Ohring : The Materials Science of Thin Films, p.419, Academic Press Inc., England, (1992)
  29. S.B. Desu, J. Electrochem. Soc., 140, 2981 (1993) https://doi.org/10.1149/1.2220943
  30. J.S. Shin and W.J. Lee, Jpn. J. Appl. Phys., 36, 6909 (1997) https://doi.org/10.1143/JJAP.36.6909
  31. R. Bruchhaus, D. Pitzer, R. Prinig, M. Schreiter and W. Wersing, Integrated Ferroelectrics, 21, 461 (1998) https://doi.org/10.1080/10584589808202086