Thermal Stability and C- V Characteristics of Ni- Polycide Gates

니켈 폴리사이드 게이트의 열적안정성과 C-V 특성

  • 정연실 (수원대학교 전자재료공학과) ;
  • 배규식 (수원대학교 전자재료공학과)
  • Published : 2001.09.01

Abstract

$SiO_2$ and polycrystalline Si layers were sequentially grown on (100) Si. NiSi was formed on this substrate from a 20nm Ni layer or a 20nm Ni/5nm Ti bilayer by rapid thermal annealing (RTA) at $300~500^{\circ}C$ to compare thermal stability. In addition, MOS capacitors were fabricated by depositing a 20nm Ni layer on the Poly-Si/$SiO_2$substrate, RTA at $400^{\circ}C$ to form NiSi, $BF_2$ or As implantation and finally drive- in annealing at $500~800^{\circ}C$ to evaluate electrical characteristics. When annealed at $400^{\circ}C$, NiSi made from both a Ni monolayer and a Ni/Ti bilayer showed excellent thermal stability. But NiSi made from a Ni/Ti bilayer was thermally unstable at $500^{\circ}C$. This was attributed to the formation of insignificantly small amount of NiSi due to suppressed Ni diffusion through the Ti layer. PMOS and NMOS capacitors made by using a Ni monolayer and the SADS(silicide as a dopant source) method showed good C-V characteristics, when drive-in annealed at $500^{\circ}C$ for 20sec., and$ 600^{\circ}C$ for 80sec. respectively.

References

  1. K. S. Bae, J. R. Kim, S. Y. Hong, Y. B. Park and Y. S. Cho, Thin Solid Films, 302, 260 (1997) https://doi.org/10.1016/S0040-6090(96)09560-0
  2. J. F. Liu, H.B. Chen, J. Y. Feng and J. Zhu, Applied Physics Letters, 77(14), 2177 (2000) https://doi.org/10.1063/1.1313815
  3. L. W. Cheng, S. L. Cheng, L. J. Chen, H. C. Chien, H. L. Lee and F.M. Pan, J. Vac. Sci. Techol. A, 18(4), 1176 (2000) https://doi.org/10.1116/1.582321
  4. U. Falke, F. Fenske, S. Schulze and M. Hietschold,, Phys. stst. sol. (a), 162, 615 (1997)
  5. F. Fenske, A. Schopke, S. Schulze and B. Selle,, Applied Surface Science, 104/105, 218 (1996) https://doi.org/10.1016/S0169-4332(96)00147-X
  6. 정연실, 구본철, 배규식, 한국재료학회지, 9(11), 1117 (1999)
  7. W-M Chen, J. Lin, J. C. Lee, IEDM Tech. Digest-, 94, 691, (1994)
  8. E. C. Jones, N. W. Cheung and D. B. Fraser, J. of Electronic Materials, 24(7), 863 (1995) https://doi.org/10.1007/BF02653335
  9. D. -X. Xu, S.R. Das, C.J. Peters, and L.E. Erickson, Thin Solid Films, 326, 143 (1998) https://doi.org/10.1016/S0040-6090(98)00547-1
  10. L. W. Cheng, S. L. Cheng, J. Y. Chen, L. J. Chen and B. Y. Tsui, Thin Solid Films, 355-356, 412 (1999) https://doi.org/10.1016/S0040-6090(99)00546-5
  11. T. H. Hou, T.F. Lei and T.S. Chao, IEEE-Electron Device Letters, 20(11), 572 (1999) https://doi.org/10.1109/55.798047
  12. F.d'Heurle, C.S. Petersson, J.E.E. Baglin, S.J. La Placa and C.Y. Wong, J. Appl. Phys., 55(12), 4208 (1984) https://doi.org/10.1063/1.333021
  13. T. Morimoto, T. Ohguro, H. S. Momose, T. Iinuma, I. Kunishima, K. Suguro, I. Katakabe, H. Nakajima, M. Tsuchiaki, M. Ono, Y. Katsumata and H. Iwai, IEEE-Electron Devices, 42(5), 915 (1995)
  14. C.M. Osburn, Q. F. Wang, M. Kellam, C. Canovai, P. L. Smith, G. E. McGuire, Z. G. Xiao and G.A. Rozgonyi, Appl. Surf. Sci., 53, 291 (1991) https://doi.org/10.1016/0169-4332(91)90279-S
  15. H. Norstron, K. Maex and P. Vandennbeele, Thin Solid Films, 198, 53, (1991) https://doi.org/10.1016/0040-6090(91)90324-Q
  16. G. T. Sarcona, M. Stewart and M. K. Hatalis, IEEE-Electron Device Letters, 20(7), 332 (1999) https://doi.org/10.1109/55.772367
  17. W. K. Kwak, B. R. Cho, S. Y. Yoon, S. J. Park and J. Jang, IEEE-Electron Device Letters, 21(3), 107 (2000) https://doi.org/10.1109/55.823571