Curing Reaction of Noble Liquid Crystalline Epoxy (LCE) with Azomethine/Aliphatic Amine

Azomethine 기를 가지는 신소재 액정 에폭시 (LCE)와 지방족 아민의 경화반응

  • Kim, Sang-Uk (Department of Chemical Engineering, The University of Seoul)
  • 김상욱 (서울시립대학교 화학공학과)
  • Published : 2001.09.01

Abstract

$\alpha$,$\omega$-Bis(4-glycidyloxybenzylidene-4-aminophenyl)methane (BGBAM) was synthesized from the initial materials, 4-hydroxylbenzaldehyde (HBA), 4,4'-methylenedianiline (MDA) and epichlorohydrin. The DSC trace for BGBAM shows two endotherms associated with the liquid crystalline phase transition around $104.2^{\circ}C$ and the isotropic transition around $171.2^{\circ}C$, and it also has a broad exotherm in the range of $178~300^{\circ}C$ due to the anionic homopolymerization of BGBAM. DSC curve for the curing of BGBAM with hexamethylene diamine (HMD) shows an endothermic peak around $93^{\circ}C$ attributed to the melting of BGBAM. It also has three exothermic peaks around $128.4^{\circ}C$ and $180.2^{\circ}C$ associated with the epoxide-amine reaction and weak peak in the range of $200~263^{\circ}C$ related to the anionic homopolymerization between the unreacted epoxide groups. The activation energy values of cure reaction by Kissinger method are 66.5, 67.3 and 90.6 kJ/mol for $T_{pl},\; T_{p2}\; and \;T_{p3},\; respectively$. The kinetic parameters by isoconverional method are similar value to those from Kissinger method.

References

  1. X.G. Li and and M.R. Huang, Polymer Degradation and Stability, 64, 81 (1999) https://doi.org/10.1016/S0141-3910(98)00175-X
  2. J.Y. Lee, M.J. Shim and S.W. Kim, Mater. Chem. Phys., 44, 74 (1996) https://doi.org/10.1016/0254-0584(95)01649-F
  3. S.N. Ege, 'Organic Chemistry', D.C. Heath and Company, (1984) p.385
  4. W. Mormann and M. Brocher, Macromol. Chem. Phys., 199, 1935, (1998)
  5. T.Ozawa, Bull. Chem. Soc. JPN, 38, 1881 (1965) https://doi.org/10.1246/bcsj.38.1881
  6. J.H. Flynn, J. Therm. Anal., 27, 95 (1983) https://doi.org/10.1007/BF01907325
  7. J.Y. Lee, M.J. Shim and S.W. Kim, J. Mater. Sci., 35, 3529 (2000) https://doi.org/10.1023/A:1004801227150
  8. J.Y. Lee, M.J. Shim and S.W. Kim, Thermochimica Acta, 371, 45 (2001) https://doi.org/10.1016/S0040-6031(00)00771-1
  9. M.G. Lu, S.W. Kim and M.J. Shim, Korea Polym. J., 7, 304 (1999)
  10. W. Mormann and C. Kuckerlz, Macromol. Chem. Phys., 199, 845 (1998) https://doi.org/10.1002/(SICI)1521-3935(19980501)199:5<845::AID-MACP845>3.0.CO;2-O
  11. S.M. Aharoni and S.F. Edwads, Macromolecules, 22, 3361 (1989) https://doi.org/10.1021/ma00198a030
  12. M. Warner and X.J. Wang, Macromolecules, 24, 4932 (1991) https://doi.org/10.1021/ma00017a033
  13. US Pats. 3,869,429 and 3,89,430, H. Blades (E. I. Du Pont de Nemouers & Co. Inc.) (1975)
  14. T.S. Chung, Polym. Eng. Sci., 26, 901 (1986) https://doi.org/10.1002/pen.760261302
  15. P.G. Higgs and R.C. Ball, Macromolecules, 22, 2432 (1989) https://doi.org/10.1021/ma00195a073
  16. J.Y. Lee, J. Jang, S.M. Hobg, S.S. Hwang and K.U. Kim, Polymer, 40, 3197 (1999) https://doi.org/10.1016/S0032-3861(98)00531-X
  17. J.E. Mark, 'Physical Properties of Polymers Handbook', AIP Press, New York, Ch.33 (1996)