Fabrication of Electrostatic Electron Lens for Electron Beam Microcolumn using the Laser Micromachining

레이저 미세가공 기술을 이용한 초소형 전자빔 장치용 정전장 전자렌즈의 제작

  • Ahn, Seung-Jun (Department of Physics and Advanced Material Science, Sun Moon University) ;
  • Kim, Dae-Wook (Department of Physics and Advanced Material Science, Sun Moon University) ;
  • Kim, Ho-Seop (Department of Physics and Advanced Material Science, Sun Moon University) ;
  • Kim, Yeong-Jeong (Dvision of Materials Engineering, Sun Moon Univeristy) ;
  • Lee, Yong-San (Department of Physics,Daejin University)
  • 안승준 (선문대학교 자연과학대학 신소재과학부) ;
  • 김대욱 (선문대학교 자연과학대학 신소재과학부) ;
  • 김호섭 (선문대학교 자연과학대학 신소재과학부) ;
  • 김영정 (선문대학교 공과대학 재료공학부) ;
  • 이용산 (대진대학교 이공대학 물리학과)
  • Published : 2001.09.01


For electron beam lithography and SEM(scanning electron microscopy) applications, miniaturized electrostatic lenses called a microcolumn have been fabricated. In this paper, we report the fabrication technique for 20~30$\mu\textrm{m}$ apertures of electron lenses based on silicon and Mo membrane using an active Q-switched Nd:YAG laser. Experimental conditions of laser micromachining for silicon and Mo membrane are improved. The geometrical structures, such as the diameter and the preciseness of the micron-size aperture are dependent upon the total energy of the laser pulse train, laser pulse width, and the diameter of laser spot.


  1. S. J. Ahn and H. W. Kwak, Jpn. J. Appl. Phys., 37, L789 (1998) https://doi.org/10.1143/JJAP.37.L789
  2. D. Du, X. Liu, G. Korn, J. Squier and G. Mourou, Appl. Phys. Lett., 64, 3071 (1994) https://doi.org/10.1063/1.111350
  3. D. Strickland and G. Mourou, Opt. Commun., 56, 219 (1985) https://doi.org/10.1016/0030-4018(85)90120-8
  4. M. K. Chun and K. Rose, J. Appl. Phys., 41, 614 (1970) https://doi.org/10.1063/1.1658722
  5. F. W. Dabby and U. C. Paek, IEEE. J. of Quantum Electronics, QE-8, 106 (1972) https://doi.org/10.1109/JQE.1972.1076937
  6. J. F. Ready, Industrial Application of Lasers, Academic Press (1997)
  7. Kunihiko Washio, SPIE, 3618, 230 (1999) https://doi.org/10.1117/12.352686
  8. U. C. Paek and F. P. Gagliano, IEEE. J. of Quantum Electronics, QE-8, 112 (1972) https://doi.org/10.1109/JQE.1972.1076946
  9. X. Liu, D. Du and G. Mourou, IEEE. J. of Quantum Electronics, QE-33, 1706 (1997) https://doi.org/10.1109/3.631270
  10. H. Beyer, W. Ross, R. Rudolph, A. Michaelis, J. Uhlenbusch, and W. Viol, J. Appl. Phys., 70, 75 (1991) https://doi.org/10.1063/1.350246
  11. V. Oliverira and R. Vilar, J. Mater. Res., 12, 3206 (1997)
  12. B. D. Clymer, Appl. Opt., 28, 5375 (1989)
  13. J. Y. Park, J. D. Lera, M. A. Yakshin, S. S. Choi, Y. Lee, K. J. Chun, J. D. Lee, D. Jeon and Y. Kuk, J. Vac. Sci. Technol. B, 15, 2749 (1997) https://doi.org/10.1116/1.589720
  14. S. J. Ahn, D. W. Kim, H. S. Kim, K. H. Cho and S. S. Choi, Appl. Phys. A, 69, s527 (1999) https://doi.org/10.1007/s003390051461
  15. S. S. Charschan, Laser in Industry, Van Nostrand Reinhold Company (1972)
  16. R. C. Davis, C. C. Williams, and P. Neuzil, Appl. Phys. Lett., 66, 18 (1995) https://doi.org/10.1063/1.114223