Preparations of Nano-scale Mullite Powder from Solution Combustion Synthesis

용액연소합성에 의한 나노크기 물라이트 분말의 제조

  • Lee, Sang-Jin (Dept. of Advanced Materials Engineering, Kyungnam University) ;
  • Yun, Jon-Do (Dept. of Advanced Materials Engineering, Kyungnam University) ;
  • Gwon, Hyeok-Bo (Dept. of Advanced Materials Engineering, Kyungnam University) ;
  • Jeon, Byeong-Se (Dept. of Advanced Materials Engineering, Kyungnam University)
  • 이상진 (경남대학교 신소재공학부) ;
  • 윤존도 (경남대학교 신소재공학부) ;
  • 권혁보 (경남대학교 신소재공학부) ;
  • 전병세 (경남대학교 신소재공학부)
  • Published : 2001.09.01

Abstract

In this study, the solution combustion method was employed to synthesize stoichiometric mullite, and hence the attrition process was employed to prepare ultrafine mullite particles with nano size. The thermal decomposition behavior and partial pressure of equilibrium species of both oxidizer and fuel were considered during solution combustion process. The synthesized product was mullite phase with 40 nm crystalline size, and the alumina contents of the product by TEM/EDS quantity analysis was 3.12$\pm$04 mole. The result showed that the synthesized mullite was almost close to the it's stoichiometric composition. For attrition process, the dispersion behavior of the mullite suspension was controlled and was comminuted with the condition of 800 rpm for 4 hours using 0.3 mm zirconia ball media. As a result of comminution, the mean particle size was 80 nm.

References

  1. H. N. Cheong, K. G. Lee and H. M. Jang, Ceramic Transactions, 12, p.395, The American Ceramic Society, Westerville, OH, (1990)
  2. J. J. Kingsley and K. C. Patil, Ceramic Transactions, 12, p.217, The American Ceramic Society, Westerville, OH, (1990)
  3. Sang Jin Lee, Jon Do Yun, Hyok Bo Kwon, Byung Sei Jun and G. L. Messing, J. Kor. Ceram. Soc., 38(6), 545 (2001)
  4. Y. Zhang and G. C. Stangle, J. Mater. Res., 9(8), 1997 (1994) https://doi.org/10.1557/JMR.1994.1997
  5. K. R. Venkatachari, D. Huang, S. P. Ostrander, W. A. Schulze and G. C. Stangle, J. Mater. Res., 10(3), 748 (1995) https://doi.org/10.1557/JMR.1995.0748
  6. J. J. Kingsley and L. R. Pederson, Mater. Letters, 18, 89 (1993) https://doi.org/10.1016/0167-577X(93)90063-4
  7. K. Kourtakis, M. Robbins, G. W. Kammlott, V. G. Lambrecht. and Jr., P. K. Gallagher, Cearamic Transactions, 12, p.209, The American Ceramic Society, Westorville, OH, (1990)
  8. J. J. Kingsley and K. C. Patil, Mater. Letters, 6, 426 (1988) https://doi.org/10.1016/0167-577X(88)90045-6
  9. Y. Nurishi and J. A. Pask, Ceram. Int., 8, 57,(1982) https://doi.org/10.1016/0272-8842(82)90015-3
  10. A. P. S. Rana, O. Aiko and J. A. Pask, Ceram. Int., 8, 151 (1982) https://doi.org/10.1016/0272-8842(82)90006-2
  11. Israel Peretz, Mullite Matrix Refractories : Mechanical Properties and Thermal Shock Damage, Ph. D thesis in Cermaic Science, Penn. State Univ. (1983)
  12. S. Somiya, R.F. Davis and J. A. Pask, Ceramic Transactions, 6, p.1, The American Ceramic Society, Westerville, OH, (1990)
  13. N. L. Bowen and J. W. Greig, J. Am. Ceram. Soc., 7, 238 (1924) https://doi.org/10.1111/j.1151-2916.1924.tb18190.x
  14. S. Aramaki and R. Roy, J. Am. Ceram. Soc., 45, 229 (1962) https://doi.org/10.1111/j.1151-2916.1962.tb11133.x
  15. W. Guse and D. Mateika, J. Crystal Growth, 22, 237 (1974) https://doi.org/10.1016/0022-0248(74)90101-8
  16. S. Somiya and Y. Hirata, Ceram. Bull., 70(10), 1624 (1991)
  17. I. A. Aksay, D. M. Dabbs and M. Sarkaya, J. Am. Ceram. Soc., 74(10), 2343 (1991) https://doi.org/10.1111/j.1151-2916.1991.tb06768.x
  18. H. Schneider, K. Okada, and J. A. Pask, Mullite and Mullite Ceramics, p.233, JOHN WILEY & SONS (1994)