Abstract

In this paper, a reduced complexity filter to simultaneously suppress the blocking and ringing artifacts of compressed video sequence is addressed. A new one dimensional regularized function to incorporate the smoothness to its neighboring pixels into the solution is defined, resulting in very low complexity filter. The proposed regularization function consists of two sub-functions that combine local data fidelity and local smoothing constraints. The regularization parameters to control the trade-off between the local fidelity to the data and the smoothness are determined by available overhead information in decoder, such as macor-block type and quantization step size. In addition, the regularization parameters are designed to have the limited range and stored as look-up table, and therefore, the computational cost to determine the parameters can be reduced. The experimental results show the capability and efficiency of the proposed algorithm.

I. 서 론

양자화 과정은 저질 영상 및 동 영상을 압축하기 위한 기본 개념으로 이용되어 왔다. 그러나, 비효율이 낮아짐에 따라, 현재의 표준화 압축 방식 및 양자화 매커니즘을 이용하는 모든 압축 방식에서는 양자화로 인한 정보 손실로 인해 복원된 영상에 심각한 화질 저하가 발생하게 된다[1]. 양자화 과정은 영상에 직접 적용될 수도 있고, 특정 범위 방식의 개수 없이 적용될 수 있다. 특정 범위 방식은 영상 전체에 적용될 수도 있고, 영상의 경계가 있는 (overlapping) 또는 경계가 없는 (non-overlapping) 일정 범위에 적용할 수도 있다. 일
반적으로 원 영상의 공간 영역의 정보를 줄일 수 있는 것은 양자화 과정으로서, 양자화 스펙 크기와 크기에 따라 그 양등분 결과를 얻게 된다. 그러나 그 양등분에서의 정보 손실이 커지게 되고, 이에 상호하여 압축 영상의 화질 저하는 더욱 심각하게 된다.

일반적으로 양자화 과정의 정보 손실도 인쇄 발생하는 화질 저하 현상은 불확확 현상 및 턱 현상의 두 가지 형태로 분류할 수 있다. 불확확 현상은 영상을 불확 확의 독립적인 처리와 쌍주와 영의 변환 예측의 정보 손실로 인해 불확 확 영역에서 신호의 불균일 현상이 심각하게 발생하는 것을 나타내며, 턱 현상은 고주파 영역의 변환 예측 정보 손실로 인해 음직이 야기하거나 음직이 않는 영역에서 불확확 형대로 존재하게 된다.

양자화에 의한 정보 손실은 복잡한 것으로 하긴 영상 값을 감소시키는 양식은 임의 100여년간 연구되어 왔으며, 기존 방식은 다음과 같이 크게 두 가지 형태로 분류할 수 있다: (1) 선형 또는 비선형의 direct 펄터 방식[7,8] (2) 반복 기법을 이용한에 복사 방식[9-11]. 전자 방식은 후자 방식에 비해 재생력 면에서 이득이 있으나, 적절한 처리가 부족하여 영상 화질 저하를 개선하는데 한계가 있으며 특히 음악적인 부분에서의 영화 현상 발생문제를 갖고 있다. 반면에, 후자 방식은 반복 기법을 사용하고 머리-머리의 수식 전개로 인해 재생성한 큰 문제점을 갖고 있으며, 실시간 처리가 요구되는 동영상 서비스에는 사용하기에 용이하지 않다.

불확확 및 턱 현상은 제거하기 위한 펄터 형태는 펄터의 구성 위치에 따라, 투표 (loop) 펄터, 후처리 (post) 펄터 및 두 방식이 결합되어 있는 형태로 구성할 수 있다. 하이브리드 MC/DCT (Motion Compensating/DCT) 방식을 이용하는 등 영상 양측에서 는 펄터화된 영상이 다음 영상의 음직임 오차 (motion prediction residual)에 영향을 미치게 되며, 투표 펄터로 인해 영화 현상이 발생하는 경우 음직이 효과가 덜어져 발생하는 단점이 있다. 이러한 문제로 인해 H.265 동영상 양측 방식[12]은 loop 펄터를 이용하여 불확확 현상 만을 제거하고자 했으므로 저 비트를 양측 영상에서 음직이 영역에서 발생하는 턱 현상은 존재하여 사각적 으로 만족스럽지 못한 결과를 낳게 된다. 이와 같은 투표 펄터가 갖을 수 있는 문제를 해결하기 위해 MPEG [13]에서는 불확확 현상 및 턱 현상 제거를 위한 펄터를 각각 후처리 펄터로 구성하였다. 화질 개선 측면에서 상당히 우수하나, 두 현상을 각각의 펄터를 이용하여 처리하였을 때 계산량 측면에서 큰 부담이 될 수 있다. 위와 같은 기존의 후처리 및 후처리 펄터가 갖고 있는 문제점을 해결하고자 본 논문에서는 저 계산량을 필요로 하는 불확확 및 턱 현상을 동시에 제거하는 효과적인 후처리 펄터를 제안하였다.

온론된 양자화 정보를 복원하는 것은 불확 확 ill-posed 문제로서 원 영상 및 노이즈에 대한 사전 정보를 이용하여 좀 더 바람직하게로 영상을 얻을 수 있음을 것이다. 그러나, 이러한 사전 정보는 매우 제한적이고 주어진 문제에 대한 최상의 해를 구하기 위해서는 주어진 데이터와 및 부가 정보로부터 사전 정보를 예측할 수 밖에 없다. 정규화 이론은 위와 같은 불확 확 문제를 최화 제약 조건 (smoothing constraints)을 사용하여 양호 위치 (well-posed)로 향기 위해 영상 복원 문제에서 널리 사용되어 왔다. 그러나, 이미 언급한 바와 같이 정규화 이론을 이용한 복원은 최화 해를 얻기 위해 반복 기법을 이용하고 정규화 복원에서 중요한 정규화 매개 변수를 결정하기 위해 상당량의 계산량을 요구하고 동영상의 불확확 및 턱 현상을 제거하기에는 용이하지 못한 면이 있다. 더불어, 전통적인 정규화 복원 방식은 영상의 완화 정도를 제어하는 정규화 매개 변수를 반복 기법 또는 주어진 사전 정보를 이용하여 예측하여 전체 영상에 적용하여 복원 영상의 영향을 상당히 겪게 되는 적응력이 부족한 단점을 보이고 있다.

본 논문에서는 위와 같은 기존의 정규화 복원 방식이 갖고 있는 계산량의 문제점을 해결하고 국부 지역 정보에 따른 적응적인 완화 제어를 위해 화소 단위의 1 차원 정규화 완화 함수를 정의한다. 일반적인 양측 영상 영상은 양자화 크기가 컷으며 화소간의 신호 불균일이 커지게 되고, 불확확 영역에서의 신호 통합 영역은 품질 내부의 화소보다 크게 나타나게 된다. 이와 같은 양자화 크기 및 화소의 위치에 따라 효과적 인 완화 정도를 정규화 매개 변수를 통해 결정하게 되고, 정규화 매개 변수는 복호화부에서 사용한 양자화 크기 및 재구성된 영상의 화소 값의 차이에 의해 결정된다. 더불어, 재구성된 화소는 원본 화소를 얻기 위해 임 점 두 개의 화소에 대한 정보만을 필요로 하므로 재생 영상의 상당한 이득을 얻을 수 있어 실시간 처리가 요구되는 동영상 복원 문제에는 상당한 이점이 있다. ITU
의 제안된 화소 단위의 정규화 환화 함수

\[M(i, j) = M(f(i, j)) + \frac{M(f(i, j))}{2} \]

(3)

식 (3)에서

\[M(f(i, j)) = \left(1 - a_s(i, j)\right)f(i, j) - g(i, j) \]

(4)

위 식에서 \(M(f(i, j)) \) 및 \(M(f(i, j)) \)은 \((i, j) \) 번째 화소의 계수 및 밝기 값으로 환화 계수를 구하기 위해 정규화 환화 함수이며, \(a_s(i, j) \) 및 \(a_s(i, j) \)는 각 함수의 환화 정도를 결정하는 정규화 매개 변수를 의미한다. 식 (4)에서 \(g(i, j) \)는 \(0 \)에 가깝고 \(1 \)에 가까운 값을 갖는 정규화 매개 변수를 둔다.

(5)

식 (5)로부터 \(M(f(i, j)) \)의 값을 구할 수 있으며, 이 값은 \(g(i, j) \)를 사용하여 정규화 환화 함수를 계산할 수 있다.

\[\frac{M(f(i, j))}{2} \]

(6)

식 (6)의 가정은 \(f \) 함수의 영역에서 양자화 오
루 값이 적기 때문에 적용 결과가 좋으나, 고 압축율에 서는 식 (6)의 가중치 0.8로부터 빠르게 하는 정도가 기가 편리화된 복합 영상의 PSNR (Peak to Signal to Noise Ratio)에 부정적인 요소로 작용한다. 그러나, 위와 같은 가중치는 복합 영상을 얻기 위한 recursive 또는 반복 기법을 이용할 수 있는 장점이 있으므로 본 논문에서 서는 식 (6)과 같은 가중치를 적용하였다. 위의 가중치를 바탕으로 탑급 방향으로 편리화된 결과는 다음과 같이 기술될 수 있다.

$$A(i,j) = \left\{ \begin{array}{c} f(i,j) \quad \text{if} \, g(i,j) \in \text{not coded block} \\ \text{Eq. (7) otherwise} \end{array} \right.$$

(8)

위 식에서 $f(i,j)$는 편리화된 이전 영상의 (i,j)번째 화소를 의미한다.

식 (7)의 결과는 편리화된 영상을 구하기 위해 실수

인산을 필요로 하게 되며, 일반적으로 소수점 인산은 경우 (integer) 인산보다 3배-9배 (processor에 따라 다

름)의 계산량을 필요로 하므로, 본 논문에서는 추구하는 계산량 집단을 위해서는 수치 인산 형태로 수행할 필요가 있다. 실제 구현을 위한 식 (7)의 변형된 형태는 4장에서 기술하기로 한다.

식 (7) 및 (8)는 수평방향으로의 편리화 및 림 현상 제거를 위한 편리화된 결과이며 수직 방향으로의 편리

화 및 림 현상은 존재하므로 수직 방향으로 편리화한 후 최종 복합 영상을 얻게 된다. 수직 방향으로의 편리

화는 수평방향으로 편리화된 결과를 식(7)에서 g로 대체 시키고 인접 화소를 수직 방향으로 설정하여 유사한

방향으로 수직 방향으로의 편리화된 영상을 얻게 된다.

Ⅲ. 정규화 매개 변수의 결정

정규화 이론에 근거한 복합 복합 및 복구 방식에서 정규화 매개 변수의 선택은 복합 영상의 편리 정도를 결정하는 매우 중요한 문건이다. 정규화 복합 이론에 따라, 정규화 매개 변수는 원 영상과 수평 분할, 노이즈 또는 오류에 대한 사전 정보에 의해 결정된다. 압축 동 영상의 노이즈는 양자화 과정에 의해 발생하고 양

자화 크기에 대한 정보는 복호화부에서 유용하므로 정

규화 매개 변수를 결정하기 위해 사용 할 수 있다. (i)

변에는 포함된 복합의 양자화 크기가 QP라 할 때, 정규화 이론에 의해 정규화 매개 변수는 다음과 같이

정의할 수 있다.

$$\frac{1 - g(i,j)}{g(i,j)} = \frac{1}{QP} \cdot \frac{1}{Q(i,j) - g(i,j)}$$

(9)

식 (9)에서 $Q(p,j) = g(i,j)$ 향은 양자화 과정에 의한 정보 순상의 에너지지를 의미하며, 식 (9)에서 정의한

값 $Q(p,j)$는 QP에 비례하는 형태로 설정되어야 한다. 더불어, 복합 영상 영역의 화소로 제한된 복합 내부의

회교간의 양자화 오류의 차는 0에 가깝도록 갖게 된다. 복합 영상 영역의 화소 간의 양자화 오류를 보정

(668)
하기 위해 본 논문에서는 보정 계수를 사용한다. 이와 같은 특성을 이용하여 식 (9)는 다음과 같이 근사화 될 수 있다.

\begin{align}
\alpha_g(i,j) = & \frac{K_g Q^2}{g(i,j) - g(i,j-1))^2 + K_g Q^2}, \\
\alpha_q(i,j) = & \frac{K_q Q^2}{g(i,j) - g(i,j+1))^2 + K_q Q^2},
\end{align}

식 (10)에서 K_g 및 K_q은 처리하고자 하는 화소와 인접화소가 불록 경계 영역에 위치한 경우, 화소 간의 양자화 오류를 보정하기 위한 매개 변수이며, 이는 실험에 의해 다음과 같이 결정하였다.

\begin{align}
K_g = & \begin{cases} 8 & \text{if } j \mod 8 = 0 \\ 1 & \text{otherwise} \end{cases}, \\
K_q = & \begin{cases} 8 & \text{if } j \mod 7 = 0 \\ 1 & \text{otherwise} \end{cases}.
\end{align}

3장에서 언급한 바와 같이 상기와 같이 기술된 방식은 소수점 연산을 필요로 하므로 식 (7)과 (10)을 변형시켜 정수 연산이 가능한 방식을 다음 장에서 기술하기로 한다.

IV. 실험 구현을 위한 변형된 방식

3장에서 기술된 정규화 매개 변수는 0에서 1사이의 값을 갖게 되므로, 2장의 필터 방식을 이용하기 위해서는 실수 연산을 요구한다. 이는 계산량의 증대를 의미하므로, 정수 연산으로의 정규화 매개 변수 및 필터화 방식으로 변형이 필요하다. 이를 위해 식 (7)와 같은 방식이 변형시켜 이용하였다.

\begin{align}
\phi(i,j) = & \frac{1}{2} \phi(i-1,j) + \phi(i,j-1) - 2\phi(i,j) - \phi(i,j+1),
\end{align}

식 (12)에서 변형된 정규화 매개 변수들은 다음과 같이 정의된다.

\begin{align}
\beta_g(i,j) = & 2^4 \alpha_g(i,j) = 2^4 \frac{K_g Q^2}{g(i,j) - g(i,j-1))^2 + K_g Q^2}, \\
\beta_q(i,j) = & 2^4 \alpha_q(i,j) = 2^4 \frac{K_q Q^2}{g(i,j) - g(i,j+1))^2 + K_q Q^2}
\end{align}

식 (13)로부터 변형된 정규화 매개 변수는 0에서 255 사이의 값을 갖도록 허용을 허용한다. 각 매개 변수는 화소의 위치, 인접 화소와의 차이 값 및 영상화 크기에 따라 유한 계수의 값을 갖게 되므로 8 bit로 구성된 lookup table에 변형된 정규화 매개 변수를 저장함으로써 사용할 수 있다. 이 경우, 별도의 저장공간이 필요하다. 요구되는 저장 공간의 크기는 8 bit/매개 변수 $\times 256$ (화소간의 gray level 차이 수) $\times 2$ (양자화 오류 보정을 위한 매개 변수 수) $\times 32$ (영상화 크기 수) = 131 kbits이다.

V. 실험 결과 및 분석

본 논문에서 제안한 방식은 H.263 동영상 표현을 투표 필터 방식과 비교하였다. 제안된 방식으로 많은 영상에 대해 각각의 압축률 및 해상도에 대한 성능을 비교하였다. 제안된 방식의 성능을 분석하기 위하여 PSNR를 사용하였으며, 주관적인 화질 평가를 나타내는 주관적 평가와 화질의 평균적인 효과적으로 측정한 분석에 한정한다. 각 방식의 계산량 평균을 위해 MIPS (Magina Instruction Per Second) 및 memory bandwidth를 이용하였다. 각 화소 및 8 bits로 표현되는 $M \times N$ 크기의 영상의 PSNR은 다음과 같이 정의된다.

\begin{align}
PSNR (dB) = 10 \log \frac{MN \times 255^2}{\|f - \hat{f}\|^2}
\end{align}

위 식에서 f 및 \hat{f}는 원 영상 및 복원된 영상을 의미한다. 방식 A는 H.263 동영상 압축 방식을 투표 필터를 이용하여 보호된 결과를 의미하며, 방식 B는 H.263 동영상 압축 방식의 부호화부 및 복호화부에 H.263 방식의 loop 필터 (Annex J)를 이용한 경우에, 방식 C는 H.263 복호화부 후단에 제안한 방식을 연속 필터 형태로 이용한 경우를 나타낸다.

표 1-3에 QCIF (Quarter Common Intermediate Format) Hall monitor, Foreman, 및 News의 300 frames을 각각 10 frames/sec로 다른 양자화 크기로 압축했을 때의 결과를 나타내었다. 표 1-3에서 나타낸 Y는 화도 (luminance) 성분을 Cb 및 Cr 두 개의 색상성 (chrominance) 성분을 나타낸다. 표에서 기술한
방식 A: H.263 동영상 압축 방식
방식 B: H.263+ loop 필터를 이용한 복원 방식
방식 C: 제안된 Post 필터를 이용한 복원 방식
Method A: H.263 video coding approach
Method B: H.263+ loop filter
Method C: Proposed post filter

표 1. QCIF Hall monitor 영상의 양자화 크기에 따른 PSNR 비교 (300 frames, 10 frames/sec)
Table 1. PSNR comparison of Hall monitor sequence as a function of quantization step size(300 frames, 10 frames/sec).

<table>
<thead>
<tr>
<th>QF</th>
<th>Y</th>
<th>Cb</th>
<th>Cr</th>
<th>비트율 (kbits/sec)</th>
<th>Y</th>
<th>Cb</th>
<th>Cr</th>
<th>비트율 (kbits/sec)</th>
<th>Y</th>
<th>Cb</th>
<th>Cr</th>
<th>비트율 (kbits/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>37.82</td>
<td>39.90</td>
<td>41.73</td>
<td>56.90</td>
<td>37.57</td>
<td>40.24</td>
<td>42.16</td>
<td>54.75</td>
<td>38.28</td>
<td>40.35</td>
<td>42.10</td>
<td>56.90</td>
</tr>
<tr>
<td>10</td>
<td>33.14</td>
<td>37.46</td>
<td>39.85</td>
<td>22.74</td>
<td>33.20</td>
<td>37.95</td>
<td>39.93</td>
<td>21.81</td>
<td>33.50</td>
<td>37.78</td>
<td>39.93</td>
<td>22.74</td>
</tr>
<tr>
<td>15</td>
<td>30.79</td>
<td>36.41</td>
<td>39.60</td>
<td>14.27</td>
<td>30.95</td>
<td>36.84</td>
<td>39.60</td>
<td>13.86</td>
<td>31.00</td>
<td>36.76</td>
<td>39.65</td>
<td>13.96</td>
</tr>
<tr>
<td>25</td>
<td>27.89</td>
<td>35.20</td>
<td>39.10</td>
<td>8.02</td>
<td>28.09</td>
<td>35.44</td>
<td>39.33</td>
<td>8.09</td>
<td>28.12</td>
<td>35.38</td>
<td>39.19</td>
<td>8.02</td>
</tr>
</tbody>
</table>

표 2. QCIF Foreman 영상의 양자화 크기에 따른 PSNR 비교 (300 frames, 10 frames/sec)
Table 2. PSNR comparison of Foreman sequence as a function of quantization step size(300 frames, 10 frames/sec).

<table>
<thead>
<tr>
<th>QF</th>
<th>Y</th>
<th>Cb</th>
<th>Cr</th>
<th>비트율 (kbits/sec)</th>
<th>Y</th>
<th>Cb</th>
<th>Cr</th>
<th>비트율 (kbits/sec)</th>
<th>Y</th>
<th>Cb</th>
<th>Cr</th>
<th>비트율 (kbits/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>36.40</td>
<td>40.64</td>
<td>41.17</td>
<td>160.66</td>
<td>36.49</td>
<td>40.89</td>
<td>41.56</td>
<td>148.88</td>
<td>36.67</td>
<td>40.86</td>
<td>41.50</td>
<td>160.66</td>
</tr>
<tr>
<td>10</td>
<td>32.05</td>
<td>37.73</td>
<td>37.97</td>
<td>67.14</td>
<td>32.17</td>
<td>38.06</td>
<td>38.36</td>
<td>63.68</td>
<td>32.27</td>
<td>38.02</td>
<td>38.29</td>
<td>67.14</td>
</tr>
<tr>
<td>15</td>
<td>30.01</td>
<td>36.46</td>
<td>36.51</td>
<td>42.06</td>
<td>30.13</td>
<td>36.94</td>
<td>36.89</td>
<td>41.08</td>
<td>30.20</td>
<td>36.77</td>
<td>36.82</td>
<td>42.06</td>
</tr>
<tr>
<td>25</td>
<td>27.71</td>
<td>35.11</td>
<td>34.54</td>
<td>25.10</td>
<td>27.89</td>
<td>35.29</td>
<td>34.88</td>
<td>25.57</td>
<td>27.85</td>
<td>35.36</td>
<td>34.84</td>
<td>25.10</td>
</tr>
</tbody>
</table>

표 3. QCIF News 영상의 양자화 크기에 따른 PSNR 비교 (300 frames, 10 frames/sec)
Table 3. PSNR comparison of News sequence as a function of quantization step size(300 frames, 10 frames/sec).

<table>
<thead>
<tr>
<th>QF</th>
<th>Y</th>
<th>Cb</th>
<th>Cr</th>
<th>비트율 (kbits/sec)</th>
<th>Y</th>
<th>Cb</th>
<th>Cr</th>
<th>비트율 (kbits/sec)</th>
<th>Y</th>
<th>Cb</th>
<th>Cr</th>
<th>비트율 (kbits/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>37.05</td>
<td>40.21</td>
<td>40.77</td>
<td>87.55</td>
<td>37.05</td>
<td>40.35</td>
<td>41.00</td>
<td>84.18</td>
<td>37.41</td>
<td>40.67</td>
<td>41.09</td>
<td>87.55</td>
</tr>
<tr>
<td>10</td>
<td>32.37</td>
<td>36.51</td>
<td>37.46</td>
<td>37.46</td>
<td>32.36</td>
<td>36.82</td>
<td>37.90</td>
<td>36.39</td>
<td>32.64</td>
<td>36.98</td>
<td>37.70</td>
<td>37.46</td>
</tr>
<tr>
<td>15</td>
<td>30.06</td>
<td>34.59</td>
<td>35.95</td>
<td>22.73</td>
<td>30.13</td>
<td>35.22</td>
<td>36.43</td>
<td>22.43</td>
<td>30.30</td>
<td>34.97</td>
<td>36.26</td>
<td>22.73</td>
</tr>
<tr>
<td>25</td>
<td>27.30</td>
<td>32.45</td>
<td>34.06</td>
<td>12.14</td>
<td>27.32</td>
<td>33.16</td>
<td>34.63</td>
<td>12.83</td>
<td>27.45</td>
<td>32.89</td>
<td>34.38</td>
<td>12.14</td>
</tr>
</tbody>
</table>

결과에서 알 수 있듯이 방식 B는 방식 C에 비해 같은 양자화 크기를 사용하여 압축한 경우보다 높은 비율로 보상된 영상과 원 영상사이의 에측 오차 (motion compensated prediction residual)을 감소 시키는 효과

(570)
표 4. QCIF Hall monitor 영상의 압축화 크기에 따른 계산량 비교

Table 4. Complexity comparison of Hall monitor sequence as a function of quantization step size.

<table>
<thead>
<tr>
<th>QP</th>
<th>Instruction Number (MIPS)</th>
<th>Memory Bandwidth (Mbytes/s)</th>
<th>Instruction Number (MIPS)</th>
<th>Memory Bandwidth (Mbytes/s)</th>
<th>Instruction Number (MIPS)</th>
<th>Memory Bandwidth (Mbytes/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>N/A</td>
<td>N/A</td>
<td>16.50</td>
<td>9.92</td>
<td>7.36</td>
<td>3.99</td>
</tr>
<tr>
<td>10</td>
<td>N/A</td>
<td>N/A</td>
<td>7.24</td>
<td>4.06</td>
<td>2.69</td>
<td>1.47</td>
</tr>
<tr>
<td>15</td>
<td>N/A</td>
<td>N/A</td>
<td>5.92</td>
<td>3.34</td>
<td>2.12</td>
<td>1.15</td>
</tr>
<tr>
<td>25</td>
<td>N/A</td>
<td>N/A</td>
<td>4.90</td>
<td>2.76</td>
<td>1.86</td>
<td>1.03</td>
</tr>
</tbody>
</table>

표 5. QCIF Foreman 영상의 압축화 크기에 따른 계산량 비교

Table 5. Complexity comparison of Foreman sequence as a function of quantization step size.

<table>
<thead>
<tr>
<th>QP</th>
<th>Instruction Number (MIPS)</th>
<th>Memory Bandwidth (Mbytes/s)</th>
<th>Instruction Number (MIPS)</th>
<th>Memory Bandwidth (Mbytes/s)</th>
<th>Instruction Number (MIPS)</th>
<th>Memory Bandwidth (Mbytes/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>N/A</td>
<td>N/A</td>
<td>24.82</td>
<td>13.98</td>
<td>13.71</td>
<td>7.43</td>
</tr>
<tr>
<td>10</td>
<td>N/A</td>
<td>N/A</td>
<td>23.84</td>
<td>13.44</td>
<td>12.88</td>
<td>6.98</td>
</tr>
<tr>
<td>15</td>
<td>N/A</td>
<td>N/A</td>
<td>23.22</td>
<td>13.08</td>
<td>12.36</td>
<td>6.68</td>
</tr>
<tr>
<td>25</td>
<td>N/A</td>
<td>N/A</td>
<td>22.16</td>
<td>12.48</td>
<td>11.69</td>
<td>6.33</td>
</tr>
</tbody>
</table>

표 6. QCIF News 영상의 압축화 크기에 따른 계산량 비교

Table 6. Complexity comparison of News sequence as a function of quantization step size.

가 있어 동일 영상에 크기에서 상대적으로 압축된 양
축화율이 계산되었음을 알 수 있다. 반면에 저작가
적 수록화 및 밀 현상 주요 원인이 되는 부분의 PSNR
향상은 제한된 방식이 적 압축률에서 방식 B보다 우수
함을 알 수 있다. 고 압축률인 경우 방식 A보다 악화
우수하게나 유사한 결과를 가지고 있음을 알 수 있다.
제한된 방식의 성능이 고 압축률보다 적 압축률에서
상대적으로 성능이 우수한 이유는 식 (6)에서 가정한
결과가 이미 언급한 바와 같이 적 압축률에서 잘 적용
되어 채널링 과정에서 발생하는 가정과의 오차가 적기
때문이다. 위의 같은 PSNR 향상은 대부분의 영상에서
발생하였으며, 각 신호 성능에 대해서도 일관성 있는
향상이 있음을 알 수 있었다. 제한된 후처리 필터는 방
식 B보다 평균 0.25 (dB) 향상된 결과를 나타내었다.
제한된 방식의 성능을 제한량 추면에서 비교하면, 방
식 B보다 상당한 이득을 있음을 알 수 있다. 표 4-6에
있는 바와 같이, 영상에 따라 정도의 차이는 있지만 방
식 B의 20-40%정도의 계산량이 필요함을 알 수 있다.
특히, 영상의 음직임이 적은 Hall monitor 영상의 경우
는 계산량의 이득이 상당히 크다. 그 이유는 제한된 방
식이에서는 메크로 분류의 주요한 영향에 따라, 제한된
이런 영상의 정보를 이용하였으므로 음직임이 적은 영
상일수록 향상률을 위한 계산량이 점감되었기 때문이다.
그림 1. Hall monitor 영상의 91번째 압축 영상 (QP=15)
Fig. 1. The 91st compressed frame of Hall monitor sequence (QP=15).

그림 2. 방식 B를 이용한 Hall monitor 영상의 91번째 복원 영상 (QP=15)
Fig. 2. The Restored 91st frame of Hall monitor sequence with method B (QP=15).

그림 3. 방식 C를 이용한 Hall monitor 영상의 91번째 복원 영상 (QP=15)
Fig. 3. The Restored 91st frame of Hall monitor sequence with method C (QP=15).

그림 4. Foreman 영상의 25번째 압축 영상 (QP=15)
Fig. 4. The 25th compressed frame of Foreman sequence (QP=15).

그림 5. 방식 B를 이용한 Foreman 영상의 25번째 복원 영상 (QP=15)
Fig. 5. The Restored 25th frame of Foreman sequence with method B (QP=15).

그림 6. 방식 C를 이용한 Foreman 영상의 25번째 복원 영상 (QP=15)
Fig. 6. The Restored 25th frame of Foreman sequence with method C (QP=15).
그림 7. News 영상의 121번째 압축 영상 (QP=15)
Fig. 7. The 121st compressed frame of News sequence (QP=15)

그림 8. 방식 B를 이용한 News 영상의 121번째 복원 영상 (QP=15)
Fig. 8. The Restored 121st frame of News sequence with method B(QP=15).

그림 9. 방식 C를 이용한 News 영상의 121번째 복원 영상 (QP=15)
Fig. 9. The Restored 121st frame of News sequence with method C(QP=15).

마지막으로, 주관적인 성능 비교를 위해, Hall monitor 91번째, Foreman 25번째, 및 News 영상의 121번째 영상에 대해 각 방식의 복원 영상을 그림 1-9에 나타내었다. 결과 영상에서 알 수 있듯이 방식 A인 경우 영상 전체에 복복화 및 뒤 현상이 존재하고 있고, 특히 News 영상의 음직임이 심한 ‘발레리나’의 운동선 부분에서는 심한 뒤 현상이 있다. 방식 B를 이용한 영상 결과는 각 영상의 복복화 현상은 효과적으로 감소하고 있음을 알 수 있으나, 음직임이 많은 영역에서의 뒤 현상은 그대로 존재하여 시각적으로 불편한 정도의 현상이 지속적으로 발생하였다. 반면에 제안된 방식을 이용한 복원 영상은 복복화 및 뒤 현상을 동시에 효과적으로 제거할 수 있었다.

VI. 결론

본 논문에서는 하이브리드 MC/DCT 방식을 이용하는 동 영상 압축 영상에서 존재하는 복복화 현상 및 뒤 현상을 동시에 제거하는 저 제산량의 post 필터를 제안하였다. 화소 단위로 정의된 새로운 1차원 정규화 창화 함수가 정의되었으며, 복원 영상의 창화 정도를 결정하는 정규화 매개 변수를 통해 복복화부에서 존재하는 이상 가능한 양자화 크기를 이용하였으며, 제산량을 절감하기 위해 데크로 분록 형태 정보를 이용하였다. 실험 결과에서 알 수 있듯이 제안된 방식은 표준화 필터 방식보다 평균 0.25(dB)의 향상된 결과를 나타냈으며, 시각적으로 뒤 현상이 효과적으로 제거되었음을 확인할 수 있었다. 특히, 제안된 후처리 필터는 표준화 방식 제산량의 평균 30%가 요구되는 매우 우수한 방식임을 알 수 있었다.

참고 문헌

