DOI QR코드

DOI QR Code

Comparison of Potentials for Polymeric Liquids

고분자액체에 대한 포텐셜의 비교

  • Published : 2002.12.20

Abstract

Many theories for polymeric liquids are based on the concepts of cell, hole, free volume or lattice etc. In the theories, van der Waals potential, Lennard-Jones 6-12 potential and their modified potentials are commonly used.In this work, Mie(p, 6) potential was applied to the Continuous Lattice Fluid Theory (which extends the discrete lattices of Lattice Fluid Theory to classically continuous lattices) and Dee-Walsch's Cell Theory (which modifies Flory's Equa-tion of State Theory). Both of them are known to be successful theories for polymeric liquids. Thus, PVT values chang-ing with p (the exponent in the repulsion potential) were calculated and compared with experimental values. And, calculated values of Lattice Fluid Theory, Flory's Equation of State Theory and Cho-Sanchez Theory using pertubation method were also compared. Through the calculated results, van der Waals potential, Lennard-Jones 6-12 potential and Mie(p, 6) potential for polymeric liquids were compared with each other.

Keywords

An equation of state;Polymer

References

  1. Lacombe, R.H.; Sanchez, I.C. J. Phys. Chem. 1976, 80,2568. https://doi.org/10.1021/j100564a009
  2. Dee, G.T.; Walsh, D.J. Macromolecules 1988, 21, 811. https://doi.org/10.1021/ma00181a043
  3. Jung, H.Y. Polymer Journal 1996, 28, 1048. https://doi.org/10.1295/polymj.28.1048
  4. Quach, A.; Simha, R. J. Appl. Phys. 1971, 42, 4592. https://doi.org/10.1063/1.1659828
  5. Sanchez, I.C.; Lacombe, R.H. J. Polym. Sci. Polym.Lett. Ed. 1977, 15, 71. https://doi.org/10.1002/pol.1977.130150202
  6. Sanchez, I.C.; Cho, J. Polymer 1995, 36, 2929. https://doi.org/10.1016/0032-3861(95)94342-Q
  7. Hildebrand, J.H.; Scott, R.L. The Solubility of Nonelectrolytes,3rd Ed.; Reinhold Publishing Corporation:New York, U.S.A., 1950; p 97.
  8. Eichinger, E.; Flory, P.J. Trans. Faraday. Soc, 1968, 64,2035. https://doi.org/10.1039/tf9686402035
  9. Sanchez, I.C.; Lacombe, R.H. J. Phys. Chem. 1976, 80,2352. https://doi.org/10.1021/j100562a008
  10. Hirschfelder, J.O.; Curtiss, C.F.; Bird, R.B MolecularTheory of Gases and Liquids; John Wiley & Sons;New York, U.S.A., 1954; p. 1040.
  11. Flory, P.J.; Orwoll, R.A.; Vrij, A.J. J. Am. Chem. Soc.1964, 86, 3507. https://doi.org/10.1021/ja01071a023
  12. Olabisi, O.; Simha, R. Macromolecules 1975, 8, 206. https://doi.org/10.1021/ma60044a022
  13. McKinney, J.E.; Goldstein, M. J. Res. Natl. Bur. Stand.A 1974, 78, 331.
  14. Sanchez, I.C.; Cho, J.; Chen, W.-J J. Phys. Chem. 1993,97, 6120. https://doi.org/10.1021/j100125a006
  15. Jung, H.Y. J. Korean. Chem. Soc. 2000, 44, 587.
  16. Cho, J.; Sanchez, I.C. Macromolecules 1998, 31, 6650. https://doi.org/10.1021/ma971784c
  17. Sanchez, I.C.; Cho, J.; Chen, W.-J Macromolecules1993, 26, 4234. https://doi.org/10.1021/ma00068a025
  18. Flory, P.J. J. Am. Chem. Soc. 1965, 87, 1833. https://doi.org/10.1021/ja01087a002