Development of a Culture Medium for Growth and Sporulation of Bacillus polyfermenticus SCD

프로바이오틱 비스루트균의 아포생산을 위한 최적배지 개발

  • 이광호 (경남대학교 생명과학부) ;
  • 박규용 (경남대학교 생명과학부) ;
  • 김성미 (경남대학교 생명과학부) ;
  • 김원석 ((주)바이넥스 기술연구소) ;
  • 백현동 (경남대학교 생명과학부)
  • Published : 2002.04.01

Abstract

Bacillus polyfermenticus SCD, which is commonly called a 'Bisroot' strain, has been appropriately used for the treatment of long-term intestinal disorders, since the live strains, in the form of active endospores, can successfully reach the target intestine. Goal of this study was to develop an industrial medium for growth and sporulation of B. polyfermenticus SCD. From the results of effect of mixed carbon sources on growth and sporulation of B. polyfermenticus SCD, glucose 2% and starch 2% was particularly found to be the most effective for the maximum number of spore production, resulting in spore cells of $4.3{\times}10^9\;spores/mL$ with a sporulation yield of 91%. For the effect of nitrogen sources, the maximum spore cells of $5.7{\times}10^9\;spores/mL$ of B. polyfermenticus SCD with a sporulation yield of 97% was obtained when B. polyfermenticus SCD was cultivated in an optimum nitrogen source medium containing 5% soybean flour. A medium involving proper phosphate salt yielded the maximum number of a spore cells of $6.0{\times}10^9\;spores/mL$ with a sporulation yield of 95%. Finally, the efficacy of an industrial medium (KH5 medium) on growth and sporulation of B. polyfermenticus SCD was investigated in jar fermenter. The higher number of viable cells $(3.3{\times}10^{10}\;cells/mL)$ and spore cells $(3.0{\times}10^{10}\;spores/mL)$ were obtained in 5 L fermenter when compared with a 500 mL baffle flask cultivation. Thus, KH5 medium developed in this study shows promise as an industrial medium because of higher cells and sporulation yield.

References

  1. Isolauri, E., Arvola, T., Sutas, Y., Moilanen, E. and Salminen, S. Probiotics in the management of atopic eczema. Clin. Exp. Allergy 30: 1604-1610 (2000)
  2. Yoon, S.-S. Design of lactic acid bacteria aiming at probiotic cul-ture and molecular typing for phylogenetic identification. J. Korean Dairy Technol. Sci. 18: 47-60 (2000)
  3. Paik, H.-D., Jung, M.-Y., Jung, H.Y, Kim, W.-S. and Kim, K.-T. Characterization of Bacillus polyfementicus SCD for oral bacteri-otherapy of gastrointestinal disorders. Korean J. Food Sci. Tech-nol. 34: 73-78 (2001)
  4. Lilly, D.M. and Stillwell, R.H. Probiotics growth promoting fac-tors produced by microorganisms. Science 147: 747-748 (1965) https://doi.org/10.1126/science.147.3659.747
  5. Kim, W.-J., Hong, S.-S. and Cha, S.-K. Selection of human-origi-nated Lactobacillus acidophilus for production of probiotics. J. Microbiol. Biotechnol. 4: 151-154 (1994)
  6. Kimoto, H., Kurisaki, J., Tsuji, N.M., Ohmomo, S. and Okamoto, T. Lactococci as probiotic strains: adhesion to human enterocyte-like Caco-2 cells and tolerance to low pH and bile. Lett. Appl Microbiol. 29: 313-316 (1999) https://doi.org/10.1046/j.1365-2672.1999.00627.x
  7. Kailasapathy, K. and Chin, J. Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol. Cell Biol. 78: 80-88 (2000)
  8. Pessi, T., Sutas, Y, Hurme, M. and Isolauri, E. Interleukin-lO generation in atopic children following oral Lactobacillus rham-nosus GG. Clin. Exp. Allergy 30: 1804-1808 (2000) https://doi.org/10.1046/j.1365-2222.2000.00948.x
  9. Pearson, D. and Ward, O.P. Effect of culture conditions on growth and sporulation of Bacillus thuringiensis subsp. israelensis and development of media for production of the protein crystal endotoxin. Biotechnol. Lett. 10: 451-456 (1988) https://doi.org/10.1007/BF01027055
  10. Paik, H.-D., Lee, N.-K., Lee, K.-H., Hwang, Y.-I. and Pan, J.-G. Identification and partial characterization of cerein BS229, a bac-teriocin produced by Bacillus cereus BS229. J. Microbiol. Bio-technol. 10: 195-200 (2000)
  11. Jun, K.-D., Lee, K.-H., Kim, W.-S. and Paik, H.-D. Microbiologi-cal identification of medical probiotic bispan strain. Korean J Appl. Microbiol. Biotechnol. 28: 124-127 (2000)
  12. Hong, S.-S., Kim, W.-J., Cha, S.-K. and Lee, B.H. Growth of Lactobacillus acidophilus in whey-based medium and preparation of cell concentrate for production of probiotics. J. Microbiol. Bio-technol. 6: 128-131 (1996)
  13. Nicholson, W.L. and Setlow, P. Sporulation, germination and out-growth, pp. 391-429. In: Molecular Biology Methods for Bacillus.Harwood, C.R. and Cutting, S.M. (eds.). John Wiley & SonsLtd., USA
  14. Paik, H.-D., Jeon, K.-D., Kim, W.-S., Kim, H.-S. and Lee, B.-C.Liquid cultivation of strains of Bacillus polyfermenticus. United States Patent 6,010,898 (2000)
  15. Kim, H.-J., Lee, N.-K., Cho, S.-M., Kim, K.-T. and Paik, H.-D.Inhibition of spoilage and pathogenic bacteria by lacticin NK24, a bacteriocin produced by Lactococcus lactis NK24 from fermented fish food. Korean J. Food Sci. Technol. 31: 1035-1043 (1999)
  16. Lee, K.-H., Jun, K.-D., Kim, W.-S. and Paik, H.-D. Partial char-acterization of polyfermenticin SCD, a newly identified bacterio-cin of Bacillus polyfementicus. Lett. Appl. Microbiol. 32: 146-151 (2001) https://doi.org/10.1046/j.1472-765x.2001.00876.x
  17. Jeong, Y.K., Park, J.U., Baek, H., Park, S.H., Kong, I.S., Kim, D.W. and Joo, W.H. Purification and biochemical characterization of a fibrinolytic enzyme from Bacillus subtilis BK-17. World J. Microbiol. Biotechnol. 17: 89-92 (2001)
  18. Kuppusamy, M. and Balaraman, K. Fed-batch fermentation stud-ies with Bacillus thuringiensis H-14 synthesising delta endotoxin. Indian J. Exp. Biol. 29: 1031-1034 (1991)
  19. Kademi, A., Fakhreddine, L., Ait-Abdelkader, N. and Baratti, J.C. Effect of culture conditions on growth and esterase production by the moderate thermophile Bacillus circulans MAS2. J. Industrial Microbiol. Biotechnol. 23: 188-193 (1999) https://doi.org/10.1038/sj.jim.2900717
  20. Markkanen, P.H. and Enari, T. The effect of phosphate on $\alpha$-amy-lase production and sporulation by Bacillus subtilis. Acta Chem. Scand. 26: 3543-3548 (1972) https://doi.org/10.3891/acta.chem.scand.26-3543
  21. Spudich, J.A. and Kornberg, A. Biochemical studies of bacterial sporulation and germination: protein turnover during sporulation of Bacillus subtilis. J. Biol. Chem. 243: 4600-4605 (1968)
  22. Warriner, K. and Waites, W.M. Enhanced sporulation in Bacillus subtilis grown on medium containing glucose:ribose. Lett. Appl.Microbiol. 29: 97-102 (1999) https://doi.org/10.1046/j.1365-2672.1999.00593.x
  23. Choi, S.H., Kang, S.K. and Ryu, Y.W. Production of Bacillus thu-ringiensis spore using an industrial medium. Korean J. Biotech-nol. Bioeng. 13: 644-648 (1998)
  24. Yu, X., Hallett, S.G., Sheppard, J. and Watson, A.K. Effects of carbon concentration and carbon-to-nitrogen ratio on growth,conidiation, spore germination and efficacy of the potential bio-herbicide Colletotrichum coccodes. J. Industrial Microbiol. Bio-technol. 20: 333-338 (1998) https://doi.org/10.1038/sj.jim.2900534
  25. Subramaniyan, S. and Sandhia, G.S. and Prema, P. Control of xylanase production without protease activity in Bacillus sp. by selection of nitrogen source. Biotechnol. Lett. 23: 369-371 (2001) https://doi.org/10.1023/A:1005663704321
  26. Zouari, N. and Jaoua, S. The effect of complex carbon and nitro-gen, salt, Tween-8O and acetate on delta-endotoxin production by a Bacillus thuringiensis subsp. kurstaki. J. Industrial Microbiol.Biotechnol. 23: 497-502 (1999) https://doi.org/10.1038/sj.jim.2900756
  27. Luna, C.L., Rios, E.M.M. and Lopes, C.E. On the settling of Bacillus sphaericus spores by pH adjustment. Biotechnol. Lett.23:1011-1013(2001) https://doi.org/10.1023/A:1010528001558