프로바이오틱 비스루트균의 아포생산을 위한 최적배지 개발

Development of a Culture Medium for Growth and Sporulation of Bacillus polyfermenticus SCD

  • 이광호 (경남대학교 생명과학부) ;
  • 박규용 (경남대학교 생명과학부) ;
  • 김성미 (경남대학교 생명과학부) ;
  • 김원석 ((주)바이넥스 기술연구소) ;
  • 백현동 (경남대학교 생명과학부)
  • 발행 : 2002.04.01

초록

본 연구에서는 프로바이오틱 생균인 비스루트균의 최적 배지 탐색을 위해 탄소원, 질소원 그리고 아포형성의 극대화를 위한 인산염의 최적 농도를 검토하였다. 500 mL baffle flask 에서 배양을 실시한 결과, 탄소원 영향 실험에서는 포도당 2%(w/v)와 전분 2%(w/v)가 첨가되었을 때 최대 총균수$(4.7{\times}10^9\;CFU/mL)$와 활성아포수$(4.3{\times}10^9\;CFU/mL)$를 보였으며 아포형성율은 91%이었다. 질소원 영향 실험에서는 대두분이 5%(w/v) 첨가되었을 때 최대 총균수$(5.9{\times}10^9\;CFU/mL)$와 활성아포수$(5.7{\times}10^9\;CFU/mL)$를 나타내었다. 그리고, 인산염 실험에서는 최대 총균수$(6.3{\times}10^9\;CFU/mL)$와 활성아포수$(6.0{\times}10^9\;CFU/mL)$$KH_2PO_4$를 1%(w/v) 첨가되었을 때 얻을 수 있었으며 아포형성율은 95%를 보였다. 5L 발효조에서 최적 배지인 KH5 배지를 이용하여 $32^{\circ}C$의 온도에서 통기량 1 vvm, 교반속도 450 rpm, pH $7.0{\pm}0.1$로 맞추어 회분식 배양을 실시한 결과 최대 총균수는 $3.3{\times}10^{10}\;CFU/mL$을 보였으며 최대 활성아포수는 $3.0{\times}10^{10}\;CFU/mL$을 나타내었고, 아포형성율은 94%를 나타내었다. 이때 아포 생산성은 $5{\times}10^8\;spores/mL/h$이었다.

참고문헌

  1. Isolauri, E., Arvola, T., Sutas, Y., Moilanen, E. and Salminen, S. Probiotics in the management of atopic eczema. Clin. Exp. Allergy 30: 1604-1610 (2000)
  2. Yoon, S.-S. Design of lactic acid bacteria aiming at probiotic cul-ture and molecular typing for phylogenetic identification. J. Korean Dairy Technol. Sci. 18: 47-60 (2000)
  3. Paik, H.-D., Jung, M.-Y., Jung, H.Y, Kim, W.-S. and Kim, K.-T. Characterization of Bacillus polyfementicus SCD for oral bacteri-otherapy of gastrointestinal disorders. Korean J. Food Sci. Tech-nol. 34: 73-78 (2001)
  4. Lilly, D.M. and Stillwell, R.H. Probiotics growth promoting fac-tors produced by microorganisms. Science 147: 747-748 (1965) https://doi.org/10.1126/science.147.3659.747
  5. Kim, W.-J., Hong, S.-S. and Cha, S.-K. Selection of human-origi-nated Lactobacillus acidophilus for production of probiotics. J. Microbiol. Biotechnol. 4: 151-154 (1994)
  6. Kimoto, H., Kurisaki, J., Tsuji, N.M., Ohmomo, S. and Okamoto, T. Lactococci as probiotic strains: adhesion to human enterocyte-like Caco-2 cells and tolerance to low pH and bile. Lett. Appl Microbiol. 29: 313-316 (1999) https://doi.org/10.1046/j.1365-2672.1999.00627.x
  7. Kailasapathy, K. and Chin, J. Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol. Cell Biol. 78: 80-88 (2000)
  8. Pessi, T., Sutas, Y, Hurme, M. and Isolauri, E. Interleukin-lO generation in atopic children following oral Lactobacillus rham-nosus GG. Clin. Exp. Allergy 30: 1804-1808 (2000) https://doi.org/10.1046/j.1365-2222.2000.00948.x
  9. Pearson, D. and Ward, O.P. Effect of culture conditions on growth and sporulation of Bacillus thuringiensis subsp. israelensis and development of media for production of the protein crystal endotoxin. Biotechnol. Lett. 10: 451-456 (1988) https://doi.org/10.1007/BF01027055
  10. Paik, H.-D., Lee, N.-K., Lee, K.-H., Hwang, Y.-I. and Pan, J.-G. Identification and partial characterization of cerein BS229, a bac-teriocin produced by Bacillus cereus BS229. J. Microbiol. Bio-technol. 10: 195-200 (2000)
  11. Jun, K.-D., Lee, K.-H., Kim, W.-S. and Paik, H.-D. Microbiologi-cal identification of medical probiotic bispan strain. Korean J Appl. Microbiol. Biotechnol. 28: 124-127 (2000)
  12. Hong, S.-S., Kim, W.-J., Cha, S.-K. and Lee, B.H. Growth of Lactobacillus acidophilus in whey-based medium and preparation of cell concentrate for production of probiotics. J. Microbiol. Bio-technol. 6: 128-131 (1996)
  13. Nicholson, W.L. and Setlow, P. Sporulation, germination and out-growth, pp. 391-429. In: Molecular Biology Methods for Bacillus.Harwood, C.R. and Cutting, S.M. (eds.). John Wiley & SonsLtd., USA
  14. Paik, H.-D., Jeon, K.-D., Kim, W.-S., Kim, H.-S. and Lee, B.-C.Liquid cultivation of strains of Bacillus polyfermenticus. United States Patent 6,010,898 (2000)
  15. Kim, H.-J., Lee, N.-K., Cho, S.-M., Kim, K.-T. and Paik, H.-D.Inhibition of spoilage and pathogenic bacteria by lacticin NK24, a bacteriocin produced by Lactococcus lactis NK24 from fermented fish food. Korean J. Food Sci. Technol. 31: 1035-1043 (1999)
  16. Lee, K.-H., Jun, K.-D., Kim, W.-S. and Paik, H.-D. Partial char-acterization of polyfermenticin SCD, a newly identified bacterio-cin of Bacillus polyfementicus. Lett. Appl. Microbiol. 32: 146-151 (2001) https://doi.org/10.1046/j.1472-765x.2001.00876.x
  17. Jeong, Y.K., Park, J.U., Baek, H., Park, S.H., Kong, I.S., Kim, D.W. and Joo, W.H. Purification and biochemical characterization of a fibrinolytic enzyme from Bacillus subtilis BK-17. World J. Microbiol. Biotechnol. 17: 89-92 (2001)
  18. Kuppusamy, M. and Balaraman, K. Fed-batch fermentation stud-ies with Bacillus thuringiensis H-14 synthesising delta endotoxin. Indian J. Exp. Biol. 29: 1031-1034 (1991)
  19. Kademi, A., Fakhreddine, L., Ait-Abdelkader, N. and Baratti, J.C. Effect of culture conditions on growth and esterase production by the moderate thermophile Bacillus circulans MAS2. J. Industrial Microbiol. Biotechnol. 23: 188-193 (1999) https://doi.org/10.1038/sj.jim.2900717
  20. Markkanen, P.H. and Enari, T. The effect of phosphate on $\alpha$-amy-lase production and sporulation by Bacillus subtilis. Acta Chem. Scand. 26: 3543-3548 (1972) https://doi.org/10.3891/acta.chem.scand.26-3543
  21. Spudich, J.A. and Kornberg, A. Biochemical studies of bacterial sporulation and germination: protein turnover during sporulation of Bacillus subtilis. J. Biol. Chem. 243: 4600-4605 (1968)
  22. Warriner, K. and Waites, W.M. Enhanced sporulation in Bacillus subtilis grown on medium containing glucose:ribose. Lett. Appl.Microbiol. 29: 97-102 (1999) https://doi.org/10.1046/j.1365-2672.1999.00593.x
  23. Choi, S.H., Kang, S.K. and Ryu, Y.W. Production of Bacillus thu-ringiensis spore using an industrial medium. Korean J. Biotech-nol. Bioeng. 13: 644-648 (1998)
  24. Yu, X., Hallett, S.G., Sheppard, J. and Watson, A.K. Effects of carbon concentration and carbon-to-nitrogen ratio on growth,conidiation, spore germination and efficacy of the potential bio-herbicide Colletotrichum coccodes. J. Industrial Microbiol. Bio-technol. 20: 333-338 (1998) https://doi.org/10.1038/sj.jim.2900534
  25. Subramaniyan, S. and Sandhia, G.S. and Prema, P. Control of xylanase production without protease activity in Bacillus sp. by selection of nitrogen source. Biotechnol. Lett. 23: 369-371 (2001) https://doi.org/10.1023/A:1005663704321
  26. Zouari, N. and Jaoua, S. The effect of complex carbon and nitro-gen, salt, Tween-8O and acetate on delta-endotoxin production by a Bacillus thuringiensis subsp. kurstaki. J. Industrial Microbiol.Biotechnol. 23: 497-502 (1999) https://doi.org/10.1038/sj.jim.2900756
  27. Luna, C.L., Rios, E.M.M. and Lopes, C.E. On the settling of Bacillus sphaericus spores by pH adjustment. Biotechnol. Lett.23:1011-1013(2001) https://doi.org/10.1023/A:1010528001558