DOI QR코드

DOI QR Code

Genetic Diversity of Goats from Korea and China Using Microsatellite Analysis

  • Kim, K.S. (Institute of Biotechnology, Yeungnam University) ;
  • Yeo, J.S. (Department of Animal Science, Yeungnam University) ;
  • Lee, J.W. (Department of Biology, Yeungnam University) ;
  • Kim, J.W. (Institute of Biotechnology, Yeungnam University) ;
  • Choi, C.B. (Department of Animal Science, Yeungnam University)
  • Received : 2001.08.17
  • Accepted : 2001.11.23
  • Published : 2002.04.01

Abstract

Nine microsatellite loci were analyzed in 84 random individuals to characterize the genetic variability of three domestic goat breeds found in Korea and China: Korean goat, Chinese goat and Saanen. Allele diversity, heterozygosity, polymorphism information content, F-statistics, indirect estimates of gene flow (Nm) and Nei's standard distances were calculated. Based on the expected mean heterozygosity, the lowest genetic diversity was exhibited in Korean goat ($H_E$=0.381), and the highest in Chinese goat ($H_E$=0.669). After corrections for multiple significance tests, deviations from Hardy-Weinberg equilibrium were statistically significant over all populations and loci, reflecting the deficiencies of heterozygotes (global $F_{IS}$=0.053). Based on pairwise FST and Nm between different breeds, there was a great genetic differentiation between Korean goat and the other two breeds, indicating that these breeds have been genetically subdivided. Similarly, individual clustering based on the proportion of shared alleles showed that Korean goat individuals formed a single cluster separated from the other two goat breeds.

Keywords

Microsatellites;Genetic Diversity;Korean Goat;Gene Flow

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Beh, K. J., C. D. Riffkin, K. P. Davies, K. L. di Ienno and J. F. Maddox. 2000. Dinucleotide repeat polymorphism at the ovine McMA7, McMA10, McMA13, McMA16, McMA17, McMA27, McMA29, McMA42, McMA47 and McMA49 loci. Anim. Genet. 31:228-229. https://doi.org/10.1046/j.1365-2052.2000.031003228.x
  2. Buchanan, F. C., L. J. Adams, R. P. Littlejohn, J. F. Maddox and A. M. Crawford. 1994. Determination of evolutionary relationships among sheep breeds using microsatellites. Genomics 22:397-403. https://doi.org/10.1006/geno.1994.1401
  3. Goudet, J. 1995. FSTAT, Version 1.2, a computer program to calculate F-statistics. J. Heredity 86:485-486. https://doi.org/10.1093/oxfordjournals.jhered.a111627
  4. Jordana, J., J. Piedrafita, A. Sanchez and P. Puig. 1992. Comparative F statistics analysis of the genetic structure of ten Spanish dog breeds. J. Heredity 83:367-374. https://doi.org/10.1093/oxfordjournals.jhered.a111233
  5. Martinez, A. M., J. V. Delgado, A. Rodero and J. L. Vega-Pla. 2000. Genetic structure of the Iberian pig breed using microsatellites. Anim. Genet. 31:295-301. https://doi.org/10.1046/j.1365-2052.2000.00645.x
  6. Saitbekova, N., C. Gaillard, G. Obexer-Ruff and G. Dolf. 1999. Genetic diversity in Swiss goat breeds based on microsatellite analysis. Anim. Genet. 30:36-41. https://doi.org/10.1046/j.1365-2052.1999.00429.x
  7. Weir, B. S. and C. C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38:1358-1370. https://doi.org/10.2307/2408641
  8. Yeh, C. C., J. K. Kogi, M. T. Holder, T. M. Guerra, S. K. Davies and J. F. Taylor. 1997. Caprine microsatellite dinucleotide repeat polymorphisms at the SR-CRSP21, SR-CRSP22, SRCRSP26 and SR-CRSP27 loci. Anim Genet. 28:380-381. https://doi.org/10.1111/j.1365-2052.1997.tb03284.x
  9. Wright, S. 1969. Evolution and the Genetics of Populations. vol 2. Univ. Chicago Press, Chicago.
  10. Canon, J., M. L. Checa, C. Carleos, J. L. Vega-Pla, M. Vallejo and S. Dunner. 2000. The genetic structure of Spanish Celtic horse breeds inferred from microsatellite data. Anim. Genet. 31:39-48. https://doi.org/10.1046/j.1365-2052.2000.00591.x
  11. Maniatis, T., J. Sambrook and E. F. Fritsh. 1982. Molecular Cloning; A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
  12. Barker, J. S. F., S. G. Tan, S. S. Moore, T. K. Mukherjee, J. L. Matheson and O. S.Selvaraj. 2001. Genetic variation within and relationships among populations of Asian goats (Capra hircus). J. Anim. Breed. Genet. 118:213-233. https://doi.org/10.1046/j.1439-0388.2001.00296.x
  13. Raymond, M. and F. Rousset. 1995. GENEPOP: population genetics software for exact tests and ecumenicism. J. Heredity 86:248-249. https://doi.org/10.1093/oxfordjournals.jhered.a111573
  14. Felsenstein, J. 1993. PHYLIP-phylogenetic inference package, version 3.5c. University of Washington, Seattle.
  15. Yeo, J. S., J. W. Kim and T. K. Chang. 2000. DNA markers related to economic traits in Hanwoo (Korean cattle). Asian-Aust. J. Anim. Sci. 13:236-239. https://doi.org/10.5713/ajas.2000.236
  16. Yang, L., S. H. Zhao, K. Li, Z. Z. Peng and G. W. Montgomery. 1999. Determination of genetic relationships among five indigenous Chinese goat breeds with six microsatellite markers. Anim. Genet. 30:452-455. https://doi.org/10.1046/j.1365-2052.1999.00548.x
  17. Hanslik, S., B. Harr, G. Brem and C. Schlotterer. 2000. Microsatellite analysis reveals substantial genetic differentiation between contemporary New World and Old World Holstein Friesian populations. Anim. Genet. 31:31-38. https://doi.org/10.1046/j.1365-2052.2000.00569.x
  18. MacHugh, D. E., R. T. Loftus, P. Cunningham and D. G. Bradley. 1998. Genetic structure of seven European cattle breeds assessed using 20 microsatellite markers. Anim. Genet. 29:333-340. https://doi.org/10.1046/j.1365-2052.1998.295330.x
  19. Guo, S. W. and E. A. Thompson. 1992. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361-372. https://doi.org/10.2307/2532296
  20. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583-590.
  21. Belkhir, K., P. Borsa, J. Goudet, L. Chikhi and F. Bonhomme. 2000. GENETIX version 4.02, Universite de Montpellier II, Montpellier (France).
  22. Minch, E. 1998. MICROSAT version 1.5b. University of Stanford, Stanford, CA.
  23. Takezaki, N. and M. Nei. 1996. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144:389-399.

Cited by

  1. Analysis of 22 Heterologous Microsatellite Markers for Genetic Variability in Indian Goats vol.14, pp.2, 2003, https://doi.org/10.1081/ABIO-120026486
  2. Genetic diversity studies in farm animals - a survey vol.121, pp.6, 2004, https://doi.org/10.1111/j.1439-0388.2004.00479.x
  3. Cross-Species Amplification of Bovidae Microsatellites and Low Diversity of the Endangered Korean Goral vol.95, pp.6, 2004, https://doi.org/10.1093/jhered/esh082
  4. Genetic Variations of 13 Indigenous Chinese Goat Breeds Based on Cytochrome b Gene Sequences vol.44, pp.3-4, 2006, https://doi.org/10.1007/s10528-006-9013-6
  5. Structure and genetic relationships between Brazilian naturalized and exotic purebred goat domestic goat (Capra hircus) breeds based on microsatellites vol.30, pp.2, 2007, https://doi.org/10.1590/S1415-47572007000300010
  6. Genetic characterization of Barbari goats using microsatellite markers vol.10, pp.1, 2009, https://doi.org/10.4142/jvs.2009.10.1.73
  7. Isolation and characterization of 12 microsatellite loci from Korean water deer (Hydropotes inermis argyropus) for population structure analysis in South Korea vol.33, pp.5, 2011, https://doi.org/10.1007/s13258-010-0166-7
  8. Genetic diversity analysis of eight indigenous goat breeds (groups) in China using AFLP markers vol.50, pp.12, 2014, https://doi.org/10.1134/S1022795414120060
  9. Genetic Structure of Chinese Indigenous Goats and the Special Geographical Structure in the Southwest China as a Geographic Barrier Driving the Fragmentation of a Large Population vol.9, pp.4, 2014, https://doi.org/10.1371/journal.pone.0094435
  10. Microsatellite Analysis of the Genetic Diversity and Population Structure in Dairy Goats in Thailand vol.29, pp.3, 2016, https://doi.org/10.5713/ajas.15.0270