Evaluation of Ultrasound for Prediction of Carcass Meat Yield and Meat Quality in Korean Native Cattle (Hanwoo)

DOI QR코드

DOI QR Code

Song, Y.H.;Kim, S.J.;Lee, S.K.

  • 투고 : 2001.03.26
  • 심사 : 2001.10.25
  • 발행 : 2002.04.01

초록

Three hundred thirty five progeny testing steers of Korean beef cattle were evaluated ultrasonically for back fat thickness (BFT), longissimus muscle area (LMA) and intramuscular fat (IF) before slaughter. Class measurements associated with the Korean yield grade and quality grade were also obtained. Residual standard deviation between ultrasonic estimates and carcass measurements of BFT, LMA were 1.49 mm and $0.96cm^2$. The linear correlation coefficients (p<0.01) between ultrasonic estimates and carcass measurements of BFT, LMA and IF were 0.75, 0.57 and 0.67, respectively. Results for improving predictions of yield grade by four methods-the Korean yield grade index equation, fat depth alone, regression and decision tree methods were 75.4%, 79.6%, 64.3% and 81.4%, respectively. We conclude that the decision tree method can easily predict yield grade and is also useful for increasing prediction accuracy rate.

키워드

Ultrasound;Korean Native Cattle;Meat Yield;Meat Quality;Data Mining;Decision Trees

참고문헌

  1. Kreider, J. L., L. L. Southern, J. E. Pontiff, D. F. Combs and K. W. McMillin. 1986. Comparison of ultrasound imaging of marketweight pigs with conventional methods of carcass evaluation. J. Anim. Sci. 63(Suppl. 1):33(Abstr.).
  2. Miller, M. F., H. R. Cross, G. C. Smith, J. F. Baker, F. M. Byers and H. A. Recio. 1986. Evaluation of live and carcass techniques for predicting beef carcass composition. Meat Sci. 23:111-129. https://doi.org/10.1016/0309-1740(88)90019-8
  3. Ozutsumi, K., T. Nada, H. Watanabe, K. Tsujimoto, Y. Aoki and H. Aso. 1996. Meat Sci. 43:61-69. https://doi.org/10.1016/0309-1740(95)00042-9
  4. SAS Institute Inc. 2000. SAS/E-miner 3.0 program. SAS Institute Inc., Cary, North Carolina.
  5. SAS Institute Inc. 2000. SAS User's Guide: Version 8.01th edn. SAS Inst., Inc., Cary, North Carolina.
  6. Recio, H. A., J. W. Savell, H. R. Cross and J. M. Harris. 1986. Use of real-time ultrasound for predicting beef cutability. J. Anim. Sci. 63(Suppl. 1):260(Abstr.).
  7. Smith, M. T., J. W. Oltjen, H. G. Dolezal, D. R. Gill and B. D. Behrens. 1990. Evaluation of real-time ultrasound for predicting carcass traits of feedlot steers. Oklahoma Agric. Exp. Sta. Anim. Sci. Res. Rep. MP129:374-383.
  8. Parrett, D. F., R. D. Johnson, D. B. Faulkner and D. L. Malone. 1987. The use of 'echnicare'real-time linear array ultrasound equipments for fat determination in beef cattle. J. Anim. Sci. 65(Suppl. 1):114(Abstr.).
  9. Herring, W. O., L. A. Kriese, J. K. Bertrand and J. Crouch. 1998. Comparison of four real-time ultrasound systems that predict intramuscular fat in beef cattle. J. Anim. Sci. 76:364-370.
  10. McLaren, D. G., J. Novakofski, D. F. Parrett, L. L. Lo, S. D. Singh, K. R. Neumann and F. K. McKeith. 1991. A study of operator effects on ultrasonic measures of fat depth and longissimus muscle area in cattle, sheep and pigs. J. Anim. Sci. 69:54-66.
  11. Robinson, D. L., C. A. McDonald, K. Hammond and J. W. Turner. 1992. Live animal measurement of carcass traits by ultrasound: Assessment and accuracy of sonographers. J. Anim. Sci. 70:1667-1676.
  12. Choi, J. H., S. T. Han, H. C. Kang, E. S. Kim and M. K. Kim. 1999. Data mining using SAS enterprise miner. Free Academy Company, Seoul.
  13. Perkins, T. S., R. D. Green and K. E. Hamlin. 1992. Evaluation of ultrasound estimates of carcass fat thickness and longissimus muscle area in beef cattle. J. Anim. Sci. 70:1002-1010.
  14. Breiman, L., J. H. Friedman, R. A. Olshen and C. J. Stone. 1984. Classification and regression tree. Wadsworth, Belmont. Brethour, J. R. 1994. Estimating marbling score in live cattle form ultrasound images using pattern recognition and neural network procedures. J. Anim. Sci. 72:1425-1432.
  15. SAS Institute Inc. 1997. SAS User's Guide: Data mining using SAS enterprise miner software. SAS Institute Inc., Cary, North Carolina.
  16. Smith, M. T., J. W. Oltjen, H. G. Dolezal, D. R. Gill and B. D. Behrens. 1992. Evaluation of ultrasound for prediction of carcass fat thickness and longissimus muscle area in feedlot steers. J. Anim. Sci. 70:29-37.
  17. Abraham, H. C., Z. L. Murphey, H. R. Cross, G. C. Smith and W. J. Frank, Jr. 1980. Factors affecting beef carcass cutability: An evaluation of the USDA yield grades for beef. J. Anim. Sci. 50:841-851.
  18. Waldner, D. N., M. E. Dikeman, R. R. Schalles, W. G. Olson, P. L. Houghton, J. A. Unruh and L. R. Corah. 1992. Validation of real-time ultrasound technology for prediction of Brangus bulls from 4 months to 2 years of age. J. Anim. Sci. 70:3044-3054.
  19. McMillin, K. W., L. L. Southern, T. D. Bidner, M. H. Johnson, S. W. McGill and J. C. Guzman. 1987. Comparisons of ultrasonic imaging and conventional measurements of live swine and pork carcass fat thickness and muscling. J. Anim. Sci. 65(Suppl. 1):79(Abstr.).

피인용 문헌

  1. 1. Estimation of Genetic Parameters for Economic Traits of Hanwoo Cows Using Ultrasound vol.53, pp.6, 2011, doi:10.5713/ajas.2002.591
  2. 2. Effects of Geographic Locations and Year-Seasons of Birth on Ultrasound Scanned Measures and Carcass Traits of Hanwoo Steers vol.54, pp.4, 2012, doi:10.5713/ajas.2002.591
  3. 3. Estimation of Genetic Parameters for Ultrasound and Carcass Traits in Hanwoo vol.54, pp.5, 2012, doi:10.5713/ajas.2002.591
  4. 4. Non-destructive analysis of sensory traits of dry-cured loins by MRI-computer vision techniques and data mining vol.97, pp.9, 2016, doi:10.5713/ajas.2002.591

과제정보

연구 과제 주관 기관 : Korea Research Foundation