DOI QR코드

DOI QR Code

Densification Behavior of Metal Powder Under Cold Compaction

냉간 압축 하에서 금속 분말의 치밀화 거동

  • Published : 2002.01.01

Abstract

Densification behavior of aluminum alloy(A16061) powder was investigated under cold compaction. Experimental data were obtained under triaxial compression with various loading conditions. A special form of the Cap model was proposed from experimental data of A16061 powder under triaxial compression. The proposed yield function and several yield functions in the literature were implemented into a finite element program (ABAQUS) to compare with experimental data for densifcation behavior of A16061 powder under cold isostatic pressing and die compaction. The agreement between finite element calculations from the proposed yield function and experimental data is very good under cold isostatic pressing and die compaction.

Keywords

Cap Model;Cold Die Compaction;Cold Isostatic Pressing;Constitutive Model;Densification;Finite Element Analysis;Stress Path;Triaxial Compression

References

  1. Gurson, A. L., 1977, 'Contiuum Theory of Ductile Rupture by Void Nucleation and Growth-Part 1. Yield Criteria and Flow Rules for Porous Ductile Media,' J. Eng. Mat. Tech., Vol. 99, pp. 2-15 https://doi.org/10.1115/1.3443401
  2. Govindarajan, R. M. and Aravas, N., 1994, 'Deformation Pressing of Metal Powder: Part Ⅰ-Cold Isostatic Pressing,' Int. J.Mech. Sci., Vol. 36, No. 4, pp. 343-357 https://doi.org/10.1016/0020-7403(94)90040-X
  3. Kim, K. T., Choi, S. W. and Park, H., 2000, 'Densification Behavior of Ceramic Powder Under Cold Compaction, ASME J. Eng. Mat. Tech., Vol. 122, pp. 238-244 https://doi.org/10.1115/1.482793
  4. Ludwik, P., 1909, Element der Technologischen Mechanik, Springer, Berlin
  5. Wang, J. C., 1984, 'Young's Modulus of Porous Materials,' J. Mater. Sci., Vol. 19, pp. 801-814 https://doi.org/10.1007/BF00540451
  6. Schofield, A. and Wroth, P., 1968, Critical State Soil Mechanics, McGraw-Hill, Lodon
  7. Lush, A. M., Weber, G. and Anand, L., 1989, 'An Implicit Time-integration Procedure for a Set of Internal Variable Constitutive Equations For Isotropic Elasto-Viscoplasticity,' Int. J. Plasticity., Vol. 5, pp. 521-549 https://doi.org/10.1016/0749-6419(89)90012-0
  8. Govindarajan, R. M., 1992, Deformation Processing of Porous Metals, Doctoral thesis, University of Pennsylvania, U.S.A.
  9. ABAQUS User's I and II Manual, Hibbit, Karlsson, and Sorensen, 1998
  10. Aravas, N., 1987, 'On The Numerical Integration of A Class of Pressure-dependent Plasticity Models,' J. Num. Meth. Engrg., vol. 24, pp. 1395-1416 https://doi.org/10.1002/nme.1620240713
  11. Sun, X. K., Chen, S. J.., Xu, J. Z., Zhen, L. D. and Kim, K. T., 1999, 'Analysis of Cold Compaction Densification Behaviour of Metal Powders,' Mater. sci. eng., Vol. 267, pp. 43-49 https://doi.org/10.1016/S0921-5093(99)00052-0
  12. Trasorras, J., Krauss, T. M. and Fergusson, B. L., 1989, 'Modeling The Powder Compaction Using The Finite Element Method,' Proceeding of the 1989 International Conference on Powder Metallurgy, San Diego. CA, pp. 85-104
  13. Chtourou, H., Guillot, M., Gakwaya, A. and Guillot, M., 1999, 'Modeling of the Metal Powder Compaction Process Using the Cap Model. Part Ⅰ: Experimental Material Characterization and Validation,' Int. j. solids struct., Submitted for Publication
  14. Crawford, J. and Lindskog, P., 1983, 'Constitutive Equation and Their Role in the Modeling of the Cold Pressing Process,' Scand. J. Metall, Vol. 12, pp. 271-281
  15. Watson, T. J. and Wert, J. A., 1993, 'On the Development and Application of Constitutive Relations for Metallic Powders,' Metallurgical Trans., Vol. 24A, pp. 2071-2081 https://doi.org/10.1007/BF02666341
  16. Kim, K. T. and Kim, J. S., 1998, 'Stage 1 Compaction Behavior of Tool Steel Powder Under Die Pressing,' Powder Metallurgy, Vol. 31, pp. 199-203
  17. Kwon, Y. S., Lee, H. T. and Kim, K. T., 1997, 'Analysis for Cold Die Compaction of Stainless-Steel Powder,' J. Eng. Mat. Tech., Vol. 119, pp. 366-373 https://doi.org/10.1115/1.2812271
  18. Fleck, N. A., Kuhn, L. T. and McMeeking, R. M., 1992, 'Yielding of Metal Powder Bonded by Isolated Contacts,' J. Mech. Phys. Solids, Vol. 40, No. 5, pp. 1139-1162 https://doi.org/10.1016/0022-5096(92)90064-9
  19. Arzt, E., 1982, 'The Influence of an Increasing Particle Coordination on the Densification of Spherical Powders,' Acta Metall., Vol. 30, pp. 1883-1890 https://doi.org/10.1016/0001-6160(82)90028-1
  20. Brown, S. B. and Weber, G. A., 1988, 'A Constitutive Model for the Compaction of Metal Powders,' Mod. Dev. Powder. Metall., Vol. 18, No. 21, pp. 465-476
  21. Shima, S. and Oyane, M., 1976, 'Plasticity Theory for Porous Metals,' Int. J. Mech. Sci., Vol. 18, pp. 285-291 https://doi.org/10.1016/0020-7403(76)90030-8
  22. Doraivelu, S. M., Gelgel, H. L., Gunasekera, J. S., Malas, J. C. and Morgan, J. T., 1984, 'A New Yield Function for Compressible P/M Materials,' Int. J. Mech. Sci., Vol. 26, pp. 527-534 https://doi.org/10.1016/0020-7403(84)90006-7
  23. Gethin, D. T., Tran, V. D., Lewis, R. W. and Ariffin, A. K., 1994, 'An Investigation of Powder Compaction Processes,' Int. J.Powder Metall., Vol. 30, No 4, pp. 385-398
  24. Kuhn, H. A. and Downey, C. L., 1971, 'Deformation Characteristics and Plasticity Theory of Sintered Powder Materials,' Int. J. Powder. Metall., Vol. 7, No. 1, pp. 15-25
  25. Lewis, R. W., Jinka, A. G. K and Gethin, D. T., 1993, 'Computer-Aided Simulation of Metal Powder Die Compaction Processes,' Powder Metall. Int., Vol. 25, No. 6, pp. 287-293