DOI QR코드

DOI QR Code

Optimal Design of Synthetic Intervertebral Disc Prosthesis Considering Nonlinear Mechanical Behavior

비선형 거동을 고려한 척추 인공추간판 보철물의 최적설계

  • Published : 2002.02.01

Abstract

A shape optimal design of synthetic intervertebral disc prosthesis is performed using a three-dimensional finite element method. Geometric parameters are introduced to model the cross-sectional geometry of the intervertebral disc. It is assumed that the total strain energy in the intact intervertebral disc is minimized under the normal load conditions, as often cited in other references. To calculate the stain energy density, both the nonlinear material properties and the large deformations are taken into account. The design variables of the annulus fiber angle and the area ratio of the nucleus pulposus are calculated as 31°and 30%, respectively, which complies well with the intact disc. Thus, the same optimization procedure is applied to the design of the synthetic intervertebral disc prosthesis whose material properties are different from the intact disc. For the given synthetic material properties, the values of 67°and 24% for the fiber angle and the area ratio are obtained.

Keywords

Intervertebral Disc;Synthetic Disc;Composite;Strain Energy Density;Optimal Design;Finite Element Method

References

  1. Shirazi-Adl, S. A., Shrivastava, S. C., Ahmed, A. M., 1984, 'Stress Analysis of the Lumbar Disk-body Uint in Compression,' Spine, Vol. 9, No. 2, pp. 120-134 https://doi.org/10.1097/00007632-198403000-00003
  2. Natali, A., Meroi, E., 1990, 'Nonlinear Analysis of Intervertebral Disk Under Dynamic Load,' Transactions of biomechanical engineering, Vol. 112, pp. 363-378
  3. Rijcken, J., Bovendeerd, P. H., Schoofs, A. J., van Campen, D. H., Arts, T., 1997, 'Optimization of Cardiac Fiber Orientation for Homogeneous Fiber Strain at Beginning of Ejection,' J. Biomech, Vol. 30, No. 10, pp. 1041-1049 https://doi.org/10.1016/S0021-9290(97)00064-X
  4. Goel, V. K., Monroe, B. T., Gillbertson, L. G., Brinckmanna, P., 1995, 'Interlaminar Shear Stresses and Laminae Separation in a Disc,' Spine, Vol. 20, No. 6, pp. 689-698 https://doi.org/10.1097/00007632-199503150-00010
  5. Langrana, N. A., Lee, C. K., Yang, S. W., 1991, 'Finite Element Modeling of the Synthetic Intervertebral Disc,' Spine, Vol. 16, No. 6, pp. s245-s252 https://doi.org/10.1097/00007632-199106001-00014
  6. Augustus, A. W. III, Manohar M. P., 1978, Clinical Bionechanics of the Spine, J. B. Lippincott Company, Philadelpia, pp. 1-90
  7. Lavaste, F., Skalli, W., Robin, S., Roy-Camille, R., Mazel, C., 1992, 'Three-Dimensional Geometrical and Mechanical Modelling of the Lumbar Spine,' J. Biomech., Vol. 25, No. 10, pp. 1153-1164 https://doi.org/10.1016/0021-9290(92)90071-8
  8. Tasi, S. W., Hahn, H. T., 1980, Intorduction to Composite Materials, Technomic Pulishing Co., Westport
  9. Natali, A. N., 1991, 'A Hyperelastic and almost Incompressible Material Model as an Approach to Intervertebral Disc Analysis,' J. Biomed. Eng, Vol. 13, pp. 163-167 https://doi.org/10.1016/0141-5425(91)90063-D
  10. Belytschko, T., Kulak, R. F., Schultz, A. B., Galante, J. O., 1974, 'Finite Element Stress Analysis of an Intervertebral Disc,' J. Biomech., Vol. 7, pp. 277-285 https://doi.org/10.1016/0021-9290(74)90019-0
  11. Shirazi-Adl, A., Drouin, G., 1988, 'Nonlinear Gross Response Analysis of a Lumbar Motion Segment in Combined Sagittal Loading,' Transactions of the ASME, Vol. 110, pp. 216-222
  12. Spilker, R. L., Dangirda, D. M., Schultz, A. B., 1984, 'Mechanical Response of Simple Finite Element Model of the Intervertebral Disc Under Complex Loading,' J. Biomech., Vol. 17, No. 2, pp. 103-112 https://doi.org/10.1016/0021-9290(84)90128-3
  13. Kulark, R. F., Belytschko, T. B., Schultz, A. B., 1976, 'Nonlinear Behavior of the Intervertebral Disc under Axial Load,' J. Biomech, Vol. 9, pp. 377-386 https://doi.org/10.1016/0021-9290(76)90115-9
  14. Goel, V. K., Kong, W. Z., Han, J. S., Weinstein, J. N. Gilvertson, L. G., 1993, 'A Combined Finite Element and Optimization Investigation of Lumbar Spine Mechanics With and Without Muscles,' Spine, Vol. 18, No. 11, pp. 1531-1541 https://doi.org/10.1097/00007632-199318110-00019
  15. Ueno, K., Liu, U. K., 1987, 'A Three-Nonlinear Finite Element Model of Lumbar Intervertebral Joint In Torsion,' Transactions of the ASME, vol. 109, pp. 200-209
  16. Lee, S. K., Mangrana, N.A., Parsons, J. R., Zimmerman, M. C., 1991, 'Development of a Prosthetic Intervertebral Disc,' Spine, Vol. 16, No. 6, supplement, pp. s253-s255 https://doi.org/10.1097/00007632-199106001-00015
  17. Markolf, K. L., Morris, J. M., 1974, 'The Structural Components of the Intervertebral Disc. A Study of Their Contributions to the Ability of the Disk to Withstand Compressive Forces,' Journal of Bone and Joint Surgery, Vol. 56A, No. 4, pp. 675-687