Creep Behavior Analysis of 25Cr-20Ni Stainless Steels by Omega Method

오스테나이트계 25Cr-20Ni 스테인리스강의 Ω법을 이용한 고온 크리프 거동 해석

  • Published : 2002.02.01


For two kinds of 25Cr-20Ni stainless steels, STS310J1TB and STS310S with and without a small amount of Nb and N, creep behavior has been studied in a stress and temperature range from 147 to 392 MPa and from 923 to 773 K with a special reference to tertiary creep. The average creep life of STS310J1TB was about 100 times longer than that of the STS310S. The apparent activation energy for the initial creep rate was 330 kJ/mol in STS310J1TB, while that of the STS310S was 274kJ/mol in a power law creep region and 478 kJ/mol in a region of power law breakdown (PLB). The activation energy for STS310S below PLB is close to the for self-diffusion. When compensating for the temperature dependence of the Young's modulus and the omega value, it was found that the apparent activation energy for STS310J1TB was reduced to the activation energy for diffusion of chromium atom in gamma steel. The stress exponent of STS310S was about 12.3 above PLB and 5.1 in a power law creep region. Notwithstanding that the creep condition for STS310J1TB was in a power law creep region, its stress exponent was 7.9 larger than that of STS310S corresponding to the same creep conditions. This was ascribed to the presence of fine precipitates in STS310J1TB.


Stress Exponent;Apparent Activation Energy;Power Low Breakdown


  1. Barrett C. R., Ardell A. J. and Sherby O. D., 1964, 'Influence of Modulus on the Temperature Temperatures,' Trans. AIME, 230, pp. 200-204
  2. Cadek J., 1988, 'Creep in Metallic Materials,' ELSEVIER, pp. 44-51
  3. 'Metal Data Book,' 1984, J. Japan Inst. Metals, pp. 181-183
  4. Monma K., Suto H., Sotome K. and Nemoto T., 1965, '低合金鋼の高溫硬度におよばす合金元業の影響について,' J. Japan Inst. Metals, 29, pp. 191-196
  5. Brandes E. A., 1983, 'Smithells Metals Reference Book,' sixth edition, pp. 13-14
  6. J. Cadek, 1987, 'べき乘則クリ一プにおける逆?力の槪念,' Bulletin of the Japan Insitute of Metals, 26, pp. 404-412
  7. Sherby O. D. and Burker P. M., 1966, 'Progress in Materials science,' 13, pp. 340-369
  8. Oikawa H. and Langdon T. G., 1985, 'Creep Behaviour of Crystalline Solids,' Ed. by Wishire B. and Evans R. W., Pinceridge Press, UK, pp. 33-82
  9. Endo T. and Shi J., 1994, 'Factors Affecting Creep Rate and Creep Life of a 2.25Cr-1Mo Steel under Constant Load,' Strength of Materials, Ed. by Oikawa H., Maruyama K., Takeuchi S. and Yamaguchi M., JIM, pp. 665-668
  10. Prager M., 1994, 'Service and Reliability Improvement: Nuclear, Fossil and Petrochemical Plants,' ASME, PVP-vol. 288, pp. 401-421
  11. Endo T. and Masuyama F., 1997, 'クリ一プ擧動解析法の最近の進法と 實用合金への滴用,' Material Japan, 36, pp. 225-231
  12. Prager M., 1994, 'The Omega Method-An Effective Method for Life and Damage Prediction in Creep Tests and Service,' Proc.of 10th Int. Conf. on Strength of material, JIM, pp. 571-575
  13. TanakaR., Shinoda T. and Tobe Y., 1979, '25Cr-20Ni 耐熱鋼の高溫諸性質におよぼすMo, N およびCの影響,' TETSU-TO-HAGANE, 56, pp. 1014-1033
  14. Goodell P. D., Cullen T. M. and Freeman J. W., 1967, 'The Influence of Nitrogen and Certain Other Elements on the Creep-Rupture Properities of Wholly Austenitic Type 304 Steel,' Trans. ASME, J. of Basic Engineering, pp. 517-524
  15. Hujita T., 1963, 'Effect of Nitrogen on Long Period Creep Rupture Strength of 12%Chromium Heat Resisting Steels,' TETSU-TO-HAGANE, 49, pp. 1563-1565
  16. Sawaragi Y., Teranishi H., Makiura H., Miura M. and Kubota M., 1985, 'ボイラ用高耐食高强度 HR3C 鋼管の開發,' Sumitomo Metals, 37, pp. 166-179
  17. 현중섭, 백수곤, 송기욱, 1998, '소성변형에너지에 의한 유지시간효과를 고려한 1Cr-0.5Mo 강의저 사이클 크리프-피로 수명예측에 관한 연구,' 대한기계학회논문집 A, 제22권, 제12호, pp. 2093-2099
  18. 김종범, 이형연, 유봉, 1998, '크리프-피로 하중하에서 손상을 받은 304 및 316LN 스테인리스강 구조물의 손상평가,' 대한기계학회논문집, 제 22 권, 제 12 호, pp. 2269-2277
  19. 김우곤, 김대환, 류우석, 2000, '316L(N) 스테인 리스강의 Monkman-Grant 크리프 수명식의 적용성,' 대한기계학회논문집, 제 24 권, 제 9 호, pp. 2326-2333
  20. 김영진, 박종주, 석창성, 1996, '고온 수명평가를 위한 수정 크리프-피로 손상모델의 개발,' 대한기계학회논문집, 제 20 권, 제 11 호, pp. 3424-3432