DOI QR코드

DOI QR Code

ON POSITIVE-NORMAL OPERATORS

  • Jeon, In-Ho (Department of Mathematics, Ewha Women's University) ;
  • Kim, Se-Hee (Department of Mathematics, Ewha Women's University) ;
  • Ko, Eun-Gil (Department of Mathematics, Ewha Women's University) ;
  • Park, Ji-Eun (Department of Mathematics, Ewha Women's University)
  • Published : 2002.02.01

Abstract

In this paper we study the properties of positive-normal operators and show that Wey1's theorem holds for some totally positive-normal operators.

References

  1. Yokohama Math. J. v.28 M-hyponormal opertors S. C. Arora;R. Kumer
  2. Illinois J. Math. v.21 On the Weyl spectrum Ⅱ K. Oberai
  3. Monatsh. Math. v.84 On dominant operators J. G. Stampfli;B. L. Wadhwa https://doi.org/10.1007/BF01579599
  4. Michigan Math. J. v.13 Wely's theorem for nonnormal operators L. A. Coburn https://doi.org/10.1307/mmj/1031732778
  5. A Hilbert space problem book, second ed. P. R. Halmos
  6. Invertibility and singularity for bounded operators R. Harte
  7. J. Math. Soc. Japan v.46 Posinormal operators H. C. Rhaly, Jr. https://doi.org/10.2969/jmsj/04640587
  8. Glasgow Math. J. v.38 A spectral mapping theorem for the Weyl spectrum W. Y. Lee;S. H. Lee https://doi.org/10.1017/S0017089500031268
  9. Proc. Amer. Math. Soc. v.17 On majorization, factorization, and range inclusion of operators on Hilbert spaces R. G. Douglas https://doi.org/10.1090/S0002-9939-1966-0203464-1
  10. Rev. Roum. Math. Pures. Appl. v.16 Some general conditions implying Weyl's theorem J. V. Baxley
  11. Pacific J. Math. v.152 Operators with finite ascent K. B. Laursen https://doi.org/10.2140/pjm.1992.152.323
  12. Glasgow Math. J. v.39 Wely's theorem holds for p-hyponormal operators M. Cho;M. Itoh;S. Oshiro https://doi.org/10.1017/S0017089500032092
  13. J. Math. Anal. Appl. v.220 On the Weyl spectrum: Spectral mapping theorem and Weyl's theorem J. Hou;X. Zhang https://doi.org/10.1006/jmaa.1997.5897

Cited by

  1. YET MORE VERSIONS OF THE FUGLEDE–PUTNAM THEOREM vol.51, pp.03, 2009, https://doi.org/10.1017/S0017089509005114
  2. A note on roots and powers of partial isometries vol.110, pp.3, 2018, https://doi.org/10.1007/s00013-017-1116-2