DOI QR코드

DOI QR Code

ITERATIVE APPROXIMATION OF FIXED POINTS FOR STRONGLY PSEUDO-CONTRACTIVE MAPPINGS

  • Published : 2002.02.01

Abstract

The aim of this paper is to prove a convergence theorem of a generalized Ishikawa iteration sequence for two multi-valued strongly pseudo-contractive mappings by using an approximation method in real uniformly smooth Banach spaces. We generalize and extend the results of Chang and Chang, Cho, Lee, Jung, and Kang.

References

  1. Bull. Amer. Math. Soc. v.73 Positivity of duality mappings E. Asplund https://doi.org/10.1090/S0002-9904-1967-11678-1
  2. Bull. Amer. Math. Soc. v.73 Nonlinear mappings of nonexpansive and accretive type in Banach spaces F. E. Browder https://doi.org/10.1090/S0002-9904-1967-11823-8
  3. J. Math. Anal. Appl. v.216 On Chidume's open questions and approximate solutions of multivalued strongly accretive mapping in Banach spaces S. S. Chang https://doi.org/10.1006/jmaa.1997.5661
  4. J. Math. Anal. Appl. v.224 Iterative approximations of fixed points and solutions for accretive and strongly pseudo contractive mappings in Banach spaces S. S. Chang;Y. J. Cho;B. S. Lee;J. S. Jung;S. M. Kang https://doi.org/10.1006/jmaa.1998.5993
  5. J. Math. Anal. Appl. v.151 An iterative process for nonlinear Lipschitzian strongly accretive mappings in $L_p$ spaces C. E. Chidume https://doi.org/10.1016/0022-247X(90)90160-H
  6. Proc. Amer. Math. Soc. v.120 Approxination of fixed points of strongly pseudo-contractive mappings https://doi.org/10.2307/2159893
  7. J. Math. Anal. Appl. v.192 Iterative solutions of nonlinear equations with strongly accretive operators https://doi.org/10.1006/jmaa.1995.1185
  8. J. Math. Anal. Appl. v.174 On Chidume's open questions L. Deng https://doi.org/10.1006/jmaa.1993.1129
  9. Acta Appl. Math. v.32 An iterative process for nonlinear Lipschitzian and strongly accretive mappings in uniformly convex and uniformly smooth Banach spaces https://doi.org/10.1007/BF00998152
  10. Nonlinear Anal. TMA v.24 Iterative approximation of Lipschitz strictly pseudo contractive mappings convex and uniformly smooth Banach spaces L. Deng;X. P. Ding https://doi.org/10.1016/0362-546X(94)00115-X
  11. Proc. Amer. Math. Soc. v.149 Fixed points by a new iteration method S. Ishikawa
  12. Proc. Amer. Math. Soc. v.73 Fixed point and iteration of a nonexpansive mapping in a Banach spaces https://doi.org/10.2307/2042883
  13. J. Math. Soc. Japan v.18/19 Nonlinear semigroups and evolution equations T. Kato
  14. Proc. Amer. Math. Soc. v.4 Mean valve methods in iteration W. R. Mann https://doi.org/10.1090/S0002-9939-1953-0054846-3
  15. Comment. Math. Univ. Carolinea v.20 Pseudo-contractive mappings and Leray-schauder boundary condition C. Morales
  16. Nonlinear Anal. TMA v.2 An iterative procedure for construction zeros of accretive sets in Banach spaces S. Reich https://doi.org/10.1016/0362-546X(78)90044-5
  17. J. Math. Anal. Appl. v.56 Comments on two fixed points iteration methods B. E. Rhoades https://doi.org/10.1016/0022-247X(76)90038-X
  18. J. Math. Anal. Appl. v.178 Iterative solution to nonlinear equations and strongly accretive operators in Banach spaces K. K. Tan;H. K. Xu https://doi.org/10.1006/jmaa.1993.1287
  19. Proc. Amer. Math. Soc. v.113 Fixed point iteration for local strictly pseudo-contractive mapping X. L. Weng https://doi.org/10.1090/S0002-9939-1991-1086345-8
  20. J. Math. Anal. Appl. v.167 A note on the Ishikawa iteration scheme H. K. Xu https://doi.org/10.1016/0022-247X(92)90225-3
  21. J. Math. Anal. Appl. v.157 Characteristic inequalities in uniformly convex and uniformly smooth Banach spaces Z. B. Xu;G. F. Roach https://doi.org/10.1016/0022-247X(91)90144-O
  22. A new inequality in Banach space with applications H. Y. Zhou
  23. Proc. Amer. Math. Soc. v.125 no.6 Approximation of fixed points of strongly pseudo-contractive maps without Lipschitz assumption H. Y. Zhou;Y. T. Jia https://doi.org/10.1090/S0002-9939-97-03850-1