DOI QR코드

DOI QR Code

FINSLER SPACES WITH THE SECOND APPROXIMATE MATSUMOTO METRIC

  • Park, Hong-Suh (Sinsegae Town. Susung 1-Ga, Susung-Ku, Taegu) ;
  • Choi, Eun-Seo (Department of Mathematics and Institute of Natural Science, Yeungnam University)
  • Published : 2002.02.01

Abstract

The present paper is devoted to studying the condition for a Finsler space with the second approximate Matsumoto metric to be a Berwald space and to be a Douglas space.

References

  1. The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology P. L. Antonelli;R. S. Ingarden;M. Matsumoto
  2. Publ. Math. Debrecen v.51 On the Finsler spaces of Douglas type. A generalization of the notion of Berwald space S. Bacso;M. Matsumoto
  3. Tensor. N. S. v.57 Landsberg spaces of dimension two with (α,β)-metric M. Hashiguchi;S. Hojo;M. Matsumoto
  4. Tensor. N. S. v.34 Projective changes of Finsler metric and projective flat Finsler space M. Matsumoto
  5. Foundations of Finsler Geometry and Special Finsler spaces
  6. J. Math. Kyoto Univ. v.29 A slope of a mountain is a Finsler surface with respect to time measure https://doi.org/10.1215/kjm/1250520303
  7. Tensor. N. S. v.50 The Berwald connection of a Finsler space with an (α,β)-metric
  8. Rep. on Math. Phys. v.31 Theory of Finsler spaces with (α,β)-metric https://doi.org/10.1016/0034-4877(92)90005-L
  9. Tensor. N. S. v.60 Finsler spaces with (α,β)-metric of Douglas type, to appear
  10. Tensor, N. S. v.56 On a Finsler spaces with a special (α,β)-metric H. S. Park;E. S. Choi
  11. Comm. of Korean Math. Soc. v.14 Finsler spaces with an approximate Matsumoto metric of Douglas type

Cited by

  1. ON THE SECOND APPROXIMATE MATSUMOTO METRIC vol.51, pp.1, 2014, https://doi.org/10.4134/BKMS.2014.51.1.115
  2. Projectively Flat Finsler Space of Douglas Type with Weakly-Berwald (α,β)-Metric vol.18, 2017, https://doi.org/10.18052/www.scipress.com/IJPMS.18.1