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FINSLER SPACES WITH THE SECOND
APPROXIMATE MATSUMOTO METRIC

HoNng-SuH PARK AND EUN-SEO CHOI

ABSTRACT. The present paper is devoted to studying the condition
for a Finsler space with the second approximate Matsumoto metric
to be a Berwald space and to be a Douglas space.

1. Introduction

The Finsler space F™ = (M™, L(z,y)) is said to have an («, 8)-metric
if L is a positively homogeneous function of degree one in two variables
a = /a;;(z)y‘y) and B = b;(z)y*. The Douglas space was introduced
by S. Bacsé and M. Matsumoto ([2]) as a generalization of the Berwald
space from the viewpoint of geodesic equations. The interesting and
important examples of (¢, 3)-metric are Randers metric, Kropina metric
and Matsumoto metric. The Matsumoto metric is an exact formulation
of the model of Finsler space, and has been studied by M. Hashiguchi et
al. ([3]). In the Matsumoto metric, the 1-form b;(z)y* was originally to
be induced by earth’s gravity ([6]). Hence we could regard b;(z) as the
infinitesimals. The present authors ([11]) have investigated the Finsler
spaces with the first approximate Matsumoto metric in which all powers
> 3 of b;(z) are neglected to be a Berwald and to be a Douglas space.

Recently, M. Matsumoto ([9]) has found the condition for Matsumoto
space F™ to be a Douglas space, and proved that if F™ is a Douglas space,
then F™ is a Berwald space.

The present paper is the consecutive study of the above one. We shall
find the condition for the Finsler space with the second approximate
Matsumoto metric in which all powers > 4 of b;(z) are neglected to be
a Berwald and to be a Douglas space.
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2. Preliminaries

The Matsumoto metric L = a?/(a — [3) is expressed as the form

21) L~ a{ggw}

for (8] < |a|. We regard b;(z) as very small numerically. If we neglect
all the power > 2 of b;(z) in (2.1), then L = a+ f3, that is a Randers
metric. If we neglect all the power > 3 of b;(z) in (2.1), then L is the
first approximate Matsumoto metric ([11]). Hereafter we neglect all the
power > 4 of b;(z) in (2.1), then (e, 5)-metric

2 IBS
(83 (97

is an approximate metric to the Matsumoto metric. We shall call the
(e, B)-metric (2.2) the second approzimate Matsumoto metric.

On the other hand, the geodesics of a Finsler space F™ = (M™, L)
are given by the system of differential equations including the functions

2Gi(x7y> = gij(yrajarF - agF) = ’inkyjyk‘:

where ;% are the Christoffel symbols constructed from the Finsler met-
ric tensor g;;(x,y) with respect to z*. The space B = (M™, o) is called
the associated Riemannian space with I = (M™, L(«, ) ([1], [8])-
The covariant differentiation with respect to the Levi-Civita connection
{;*sHx) of R™ is denoted by (;). We use the symbols as follows:

1
2
According to [7], the functions G*(z,y) of F™ with (a, 3)-metric are
written in the form
QGZ - {07:0} + 2Bi:
2.3 . : Ly ., Lo, i ;
>3 B'= ——aLﬁsZoJFC*{ﬁ—“ﬁyb———a ca Ly abz)},

L, al, L., B

where L, = OL/8a, Lg = 8L/88, Lao = 8°L/Bada, the subscript 0
means contraction by y* and we put

o — afB(rooLa — 2as0Lg)
"~ 2(6%La + @7?Laa)

1 L .
rig = 5(0sj i)y sy = i —bya)y 8Ty =aTsey, 5= bes’y

i ij
b" = a™b,,



Finsler spaces with the second approximate Matsumoto metric 155

v =b%a® — B, b = a"bb;.

We shall denote the homogeneous polynomials in (y*) of degree r by
hp(r) for brevity.

The Finsler space F™ with (a, 8)-metric is a Douglas space, if and
only if BY = By — BJy" are hp(3) ([2]). From (2.3) we have

P7 O£L5 i g i azLaa
9. ij ioad _ od ot
(2.4) B I, (s'oy? — s7oy") + L.

We shall state the following Lemma for the later.

C*(b'y? — byt).

LeMMA ([3)). If a® = 0 (mod. B), that is, a;;(z)y*y’ contains b;y* as
a factor, then the dimension n is equal to 2 and b? vanishes. In this case
we have 1-form § = d;(z)y" satisfying o = 36 and d;b® = 2.

3. The condition to be a Berwald space

The present section is devoted to find the condition for a Finsler
space F'™ with the second approximate Matsumoto metric (2.2) to be a
Berwald space. From (2.3) the Berwald connection BI" = (G, G";,0)
of F™ with (¢, B)-metric is given by

G'j = ;G" ='; + By,
Gj'e = OhG'j =" + Bi'k,

where we put BY; = 53-15”' and Bj' = 3;‘.,Bij. On account of [7], B;%
are determined by

(3.1) LoBi* iy yr + aLp(B,*3bx — by )y’ = 0.
In F™ with (2.2), we obtain
(3.2)
o —af® — 26 o + 203 + 36° 204° 4 64°
Lo = : , Lg= _ , Loa = .
8% 8 84

Substituting (3.2) in (3.1), we have
(3.3) (@®—aB°—208%) Bjuy’y*+a? (e +2a8+36%) (Bjnib* —bs. )y’ = 0,

where BJM = akTBjTi.
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We suppose that F™ is a Berwald space, i.e., B;"x and b;,; are func-

tions of position alone. Then (3.3) is separated in the rational and
irrational terms in y* as follows:

af(a® — B*)Bjriy’y* + 202 B(Bjrib* — b;.1)y7}
—20°Bjray* + o? (0 + 38%) (Bjrib"* — bja)y’ =0,

which is reduced to two equations as follows:

(3'4) (az - 52)Bjklyjyk + zazﬁ(Bjkzbk _— b]z)y7 = 0’

(3.5) —28° By y® + o2 (@® + 38%)(Bjuib” — b;.)y? = 0.
Eliminating terms (Bj;b* —b;.;)y’ from the equations above, we have
(@® + 8%)’ Baiy'y* = 0,
which implies Bj;3/y* = 0. Hence we get Bjy; + Byji = 0. Since By
is symmetric in (j,7), we easily get B, = 0. Therefore we have from
(3.4) or (3.5)
(3'6) bj"i, =0.

On the other hand, Hashiguch, H6jyd and Matsumoto have shown
([3]) that if (3.6) holds good, then F™ is a Berwald space. Thus we have

THEOREM 3.1. A Finsler space with the second approximate Mat-
sumoto metric (2.2) is a Berwald space if and only if b;,; = 0.

4. The condition to be a Douglas space

The present section is devoted to find the condition for a Finsler space
F™ with the second approximate Matsumoto metric to be a Douglas
space. In F™ with (2.2), we have

_ afren(@® — af® ~ 26°%) — 2500”(a” + 205 + 35%)}

(41 26{0® — 3067 — 88° + 2b%a? (o + 35)}
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If o® — 30,8% — 832 + 26202 (o + 38) = 0, then it leads to a contradiction
easily. Thus the denominator of C* is not zero. Substituting (3.2) and
(4.1) in (2.4), we have

{a® — 3032 -86° + 2b%a* (o + 38) H(a® — a8® — 28%)BY
~a?(0? +2a8 + 36%)(s'oy” — 7 oy)}
—a*(a + 38){ree(e® — af® - 26°)
2800 (a® + 208 + 35%) by’ — blyt) = 0.

(4.2)

Suppose that F'" is a Douglas space. that is, B%/ are hp(3). Separating
(4.2) in the rational and irrational terms of y*, we have

(4.3)

(0 — 40%5° + 32 3% + 166° + 2b%° — 2020 B2 - 122 B*) BY

+ (—2a°8 + 14046 + 2407 3° ~ 10b%a 3 — 182 6°)
x (s'oy” — s70y")

+ {7’00(—0{6 -+ O{4ﬂ2 -+ 6Oé2ﬂ4) -+ 280(50566 + 90&453)}
x (b'y? — by

+ a|(—10028% + 148° + 6b%a* 6 — 10622 8%) BY
+ (—ab 4 2502 8* — 26%a® — 18b%a* %) (s' oy’ — 7 0y)
+ {roo (562 3% — 3a*B) + 2s0(a® + 9a* %) }(biy? — byt)

=0,

which is reduced to two equations as follows:

(o — 40*F?% + 3025* + 1645
+ 26208 — 2620t 8? — 12070234 BY
+ (=208 8 + 140 3% + 2402 3° — 1062058 — 1820 3%)
(4.4) x (s'oy’ — &7 0y’)
+ {rop(—a® + a*B% 4+ 602 8*) + 250(50° 8 + 902 3°)}
x by’ — by')
= 0.
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(—10023% 4+ 146° + 6b%a? 8 — 1062?33 B
(45)  +(—af + 25028* — 2b%a® — 186204 4% (s' oy’ — &7oy)
+{roo (562 8% — 3a*B) + 2s0(a® + 90 57)} (b'y? ~ blyt) = 0.
Eliminating B from these equations, we obtain
(4.6) A(s'oy? — sToy’) + B(b'y’ — Py) =0,
where
A =482 (—a* + 7028 + 128" — 5b%a* — 9% a”3%)

x (—Ba26% + 78* + 3v%a* — 5b°a25%)
(4.7) —(—a? + 258 — 2b%a* — 18b%a4%)

x(af — 40262 + 302 6* + 166° + 2b°a®

— 262062 — 12b%673%),

B = 2{rgo(—o* + a?8% + 66%) + 250 (504 8 + 947 5°)}
x(—502 3% +78° 4 3b%a* B — 562’ 3°)
(4.8) —{roo(58° — 3a%B) + 2s0(a* + 9a°3%)}
x(af — 4a*B8% + 362 6* +168° + 26%a°
~ 20l — 126%a2 ).

Transvection of (4.6) by b;y; leads to
(4.9) Aspa® + B(b2a? — %) =0.

The term of (4.9) which seemingly does not contain o is 4rgo8'*. Hence
we have hp(11) v11 such that

(4.10) rooBtt = vy

Then it will be better to divide our consideration in to three cases:
(10) Vi1 = O,
(2% v #0, o #0 (mod. B),
(3%°) w11 #0, a?=0 (mod. G).
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(1°) Case of v11 = 0: TFrom (4.10), 7o = 0, and (4.9) is reduced
to

(4.11) sp{A + By (*a? - 3%} =0,
where
B = 4(5a%8 + 98%) (=502 3% + 78° + 3b%a1 B — 5b%0?3°)
—~2(a® +98%)(a® — 40*3% 4 3a23* + 168°
+ 2020 — 2b%a* 32 — 120702 3%).
If A+ By (b*a” — 3?) = 0 in (4.11), then the term of this equation which
does not contain o is —2831°, Therefore there exists hp(8) vg such that
28610 = o?ug. In this case, if & #Z 0 (mod. §), then we have vg = 0,
which leads a contradiction. Therefore A+ B1(b2a?~32) #0.If o =
(mod. 8), then A + B;(b%a? — 3?) = 0 is written as following
437 (—6% + 786 + 12%) (=56 + 706)
— (=6% 4+ 258%)(6° — 4862 + 3875 + 166°)
= B{4(56 + 95)(~50%5 + 76%)
— 2(6 +98)(6% — 456 + 3425 + 166°)} = 0,

(4.12)

provided b* = 0 and a? = 36 by Lemma. The term of (4.12) which does
not contain 3 is §°. Therefore there exists hAp(4) v4 such that §° = Buy,
which leads a contradiction. Hence A + By (b%a?® — 52) # 0.

Therefore, in any case of o # 0 (mod. @) or @® = 0 (mod. ), we
see that A + B;(b%a? — 52) # 0. Thus sg = 0 from (4.11). Substituting
sp = 0 and rgp = 0 in (4.6), we have

(413) A(Sig’yj - Sjoyi) =0.
If A =0, then we have from (4.7)
45°(—a* + 70?8 + 126* — 5b%0* — 9b%a’F?)
x(~5026% + 78* + 3b%a* — 5b%a*5?)
(4.14) —(—at +253* — 2b%a* — 18707 F°)
x (o8 — 40 5% 4+ 302 8% + 165 + 2b%af
—2b%0% 67 — 12b%026%) = 0.
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The term of (4.14) which seemingly does not contain a? is —643'". Thus,
there exists hp(8) wg such that —6481° = a?ws. From this equation, we

have wg = 0, which leads a contraction. Therefore A # 0. Thus we have
from (4.13)

(4.15) stoy! — 879yt = 0.

Transvection of (4.15) by y; gives s’g = 0. Finally r;; = s;; = 0 are
concluded, that is, b;;; = 0.

(2°): Case of v13 #0, a® # 0 (mod. 3): In this case, (4.10)
shows that there exists a function h = h(x) satisfying

(4.16) roo = ha?.
Substituting (4.16) in (4.9), we have
s0A + |2{h(—a* + a?B? + 68*) + 250(5%6 + 95%)}
x (=Ba?B + 78° + 3b%a*3 — 5b%a’ )

(4.17) — {h(58° - 3a2B) + 2s0(a® + 96°)}
x (a® — 40 3? + 302 8* + 165° + 2b%a’

— W%t % — 1267 B)| (a” — %) = 0.

The terms of (4.17) which seemingly do not contain o are —4(7sg +
hB3)3'°. Hence there exists hp(9) wy such that (7sg + h5)G° = o ws.
Since a? # 0 (mod. (), we must have wg = 0. Thus we have

(4.18) (780 + hB3)BY° =0,

which implies 7s; + hb; = 0. Transvecting this equation by b?, we obtain
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hb? = 0. If b* = 0, we get from (4.9) and (4.18)
(—h/7){4ﬁ3(—a4 + 762 8% + 1284 (=502 3% + 76%)
— (—a* +258%)(a® — 40*6% + 3023 + 1656)}

- 5[2{h<—a4 0?0 +60%) — (2h/T)B(5026 + 953)}
x (=502 3% + 78°%)

- {h(5/33 —30°8) — (2h/7)B(e” + 952)}

(4.19)

X {aﬁ — 40*5% + 302 8% + 1656}] =0.

The term of (4.19) which seemingly does not contain 3 is —(h/7)a!?.
Therefore there exists ~p(9) ug such that —(h/7)a!® = Bug. Since a? # 0
(mod.3), we have ug = 0, which leads a contradiction. Thus we have
h = 0 and hence sg = 0,7g0 = 0 from (4.18) and (4.16) respectively.
Therefore (4.6) is reduced to A(séyy’ —s7¢y*) = 0. Since A # 0, we have
stoy? — sy’ = 0. Transvection of this equation by y; gives s’y = 0.
Finally r;; = s;; = 0 are concluded, that is, b;.; = 0.

(39) Case of vg # 0, o® =0 (mod. §): In this case, Lemma
shows that n = 2, b2 = 0 and o = 36, § = d;(z)y*. Therefore (4.6) gives
(4.20) A'(sioy! — s70y’) + B (bly? — Wy') =0,

where

A = (8 — 486% + 26%6° — 52367 + 119845 + 645%),
B = 100(38* — 786% — 50°5 — 136%5 + 45%)
+ 280(—5° — 585* — 176°8° — 636°6% + 186%9).

Transvection of (4.20) by b;y; leads to

506(8° — 286 +83%6% — 183%6% — 785 + 1008°)

(+.21) —rgo3(36% — 766% — 53%6% — 138°6 — 43*) = 0.
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The term of (4.21) which seemingly does not contain 3 is 506°. Thus
there exists Ap(6) Ag such that sg0® = BAg, which implies so = kS,
where k = k(z).

On the other hand, (4.10) gives roo3'° = dv;1, which must be reduced
to

(4.22) rog = 0vq,
where vy is a hp(1). Substituting s = k5 and (4.22) in (4.21), we have
k(8% — 285% + 86263 — 183%5% — 74%*5 + 100/3°)

—v1(36% — 786° + 56267 — 13835 — 48*) = 0.
The terms of (4.23) which do not contain 8 are (k& — 3v;)d*. Therefore
there exists hp(4) g such that (k6 — 3v;)6* = By, which implies k6 —

3v; = f(x)B. From this we obtain

(4.24) vy = %(kd — fB).

Substituting of (4.24) in (4.23), we get
k(6% 4 1986% — 4158262 — 17336 + 3005%)
+£(36* — 786 — 53262 — 13335 — 48%) = 0.

From (4.25) we see that there exists hp(3) v3 such that (k-+3f)d* = Bus,
from which

(4.23)

(4.25)

k
(4.26) f= —3
Substituting (4.26) in (4.25), we have
k(640 — 11883567 —~ 3836 + 9043°) = 0.

If 646% — 118862 — 38326 + 904/3* = 0, then there exists hp(2) ¢» such
that 646% = B¢,, which leads a contradiction. Thus we have k = 0 and
hence sg = 0. From (4.26) and (4.24), we get f = 0, v; = 0 respectively.
Therefore we obtain rgp = 0. Substituting sq = 0 and roo = 0 in (4.20),
we get
(4.27) A(s'oy’ = 7y") = 0.
If A" =55 — 486* —2826% — 523362 +1198%6 + 64 = 0, then there exists
hp(4) 14 such that §° = Si,. This leads a contradiction. Thus A 0
in (4.27). Hence we get s°0y” — 879y’ = 0. Transvection of this equation
by y; gives s‘g = 0. Thus s;; = r,; = 0 are concluded, that is, b;;; = 0.

Conversely if b;.; = 0, then we obtain BY = 0 from (2.4). Hence F™"
is a Douglas space. Consequently we have
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THEOREM 4.1. An n-dimensional Finsler space F'* with the second
approximate Matsumoto metric (2.2) is a Douglas space, if and only if
bi;j =0.

From Theorem 3.1 and Theorem 4,1, we have

THEOREM 4.2. If an n-dimensional Finsler space F'™ with the second
approximate Matsumoto metric (2.2) is a Douglas space, then F™ is a
Berwald space.
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