DOI QR코드

DOI QR Code

CHOW GROUPS OF COMPLETE REGULAR LOCAL RINGS III

Lee, Si-Chang

  • Published : 2002.04.01

Abstract

In this paper we will show that the followings ; (1) Let R be a regular local ring of dimension n. Then $A_{n-2}$(R) = 0. (2) Let R be a regular local ring of dimension n and I be an ideal in R of height 3 such that R/I is a Gorenstein ring. Then [I] = 0 in $A_{n-3}$(R). (3) Let R = V[[ $X_1$, $X_2$, …, $X_{5}$ ]]/(p+ $X_1$$^{t1}$ + $X_2$$^{t2}$ + $X_3$$^{t3}$ + $X_4$$^2$+ $X_{5}$ $^2$/), where p $\neq$2, $t_1$, $t_2$, $t_3$ are arbitrary positive integers and V is a complete discrete valuation ring with (p) = mv. Assume that R/m is algebraically closed. Then all the Chow group for R is 0 except the last Chow group.group.oup.

Keywords

Chow group;complete regular local ring;Gorenstein ideal of codimension 3;dimension 5;height 3 ideal

References

  1. Local analytic geometry S.Abhyankar
  2. J.Algebra v.106 Perfect modules over Cohen-Macaulay local rings W.Smoke https://doi.org/10.1016/0021-8693(87)90002-0
  3. Inventiones Math. v.26 no.26 Liaison des varietes algebrique Ⅰ C.Peskin;L.Szipiro https://doi.org/10.1007/BF01425554
  4. J.Algebra v.171 On Chow troup and intersection multiplicity of modules Ⅱ S.P.Dutta https://doi.org/10.1006/jabr.1995.1016
  5. Commutative ring theory H.Matsumura
  6. Commun.Korean Math.Soc. v.11 no.11 Chow groups on complete regular local rings Ⅱ S.Lee;K.B.Hwang
  7. Math.Ann. v.271 no.3 A K-theoretic approach to multiplicities M.Levine https://doi.org/10.1007/BF01456079
  8. J.Math v.12 Generalization of the notion of class group, Ⅲ L.Claborn;R.Fossum
  9. Nagoya Math.J. v.50 A note on Gorenstein rings of embedding Codimension 3 J.Watanabe