DOI QR코드

DOI QR Code

ON THE HOMOLOGY OF SCHUR COMPLEXES

  • Choi, Eun-J. (Department of Mathematics Yonsei University) ;
  • Kim, Young-H. (Department of Mathematics Yonsei University) ;
  • Kyoung, Il-H. (Department of Mathematics Yonsei University) ;
  • Won, Seung-J. (Department of Mathematics Yonsei University)
  • Published : 2002.07.01

Abstract

We give an upper bound for the degrees of the nonvanishing homology modules of the Schur complex L$\sub$λ/${\mu}$/ø in terms of the depths of the determinantal ideals of ø). Using this fact, we obtain the acyclic theorem for L$\sub$λ/ø and the information concerning the support of the homology modules of L$\sub$λ/${\mu}$/ø.

Keywords

determinantal ideal;minimal free resolution;schur complex

References

  1. Proc. Roy. Soc. Ser. A. v.269 Ideal defined by matrices and a certain complex associated with them J. A. Eagon;D. G. Northcott https://doi.org/10.1098/rspa.1962.0170
  2. Adv. in Math. v.57 Complexes associated with trace and evaluation: Another approach to Lascoux's resolution P. Pragacz;J. Weyman https://doi.org/10.1016/0001-8708(85)90052-0
  3. J. Algebra v.142 Resolutions of Determinantal ideals: t-minors of (t + 2) × Matrices https://doi.org/10.1016/0021-8693(91)90320-8
  4. Adv. in math. v.94 Resolutions of Determinantal ideals: n-minors of ( n + 2 )-Square Matrices M. Hashimoto and K. Kurano https://doi.org/10.1016/0001-8708(92)90032-G
  5. Adv. in math. v.34 A new construction of the Eagon-Northcott complex D. A. Buchsbaum https://doi.org/10.1016/0001-8708(79)90064-1
  6. Adv. in Math. v.44 Schur functors and Schur complexes https://doi.org/10.1016/0001-8708(82)90039-1
  7. Presses univ. Montreal Homological invariants of modules over commutative rings P. Roberts
  8. J. Algebra v.211 A Note on the Homology of the Schur Complex I. Manji;R. Sanchez https://doi.org/10.1006/jabr.1998.7555
  9. Paris Ⅶ These A. Lascoux
  10. Amer. J. Math. Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci J. A. Eagon;M. Hochster
  11. Adv. in Math. v.39 Resolutions of Determinantal ideals: The submaximal Minors K. Akin;D. A. Buchsbaum;J. Weyman https://doi.org/10.1016/0001-8708(81)90055-4
  12. Brandeis Lecture Notes Generic Free Resolutions and Schur Complexes
  13. Brandeis University Thesis H. Weyman
  14. Adv. in math. v.21 A characteristic-free approach to invariant theory C. DeConcini;C. Procesi https://doi.org/10.1016/S0001-8708(76)80003-5
  15. Nagoya Math. J. v.118 Determinantal indeals without minimal free resolutions M. Hashimoto https://doi.org/10.1017/S0027763000003081