• Hong, Chan-Yong (Department of Mathematics Kyung Hee University) ;
  • Kim, Nam-Kyun (Department of Mathematics Yonsei University) ;
  • Kwak, Tai-Keun (Department of Mathematics Daejin University)
  • Published : 2002.07.01


We investigate the relationship between various generalizations of von Neumann regularity condition and the condition that every prime ideal is maximal in exchange rings.


exchange rings;generalizations of von Neumann regular rings;maximal and prime ideals


  1. Comm. Algebra v.25 no.4 On abelian π-regular rings A. Badawi
  2. Glasgow Math. J. v.37 On quasi-duo rings H. P. Yu
  3. Canad. Math. Bull. v.22 Rings all of whose Pierce stalks are local W. K. Burgess;W. Stephenson
  4. Pacific J. Math. v.14 Refinements for infinite direct decompositions of algebraic systems P. Crawley;B. Jonsson
  5. Math. J. Okayama Univ. v.20 Some studies on strongly π-regular rings Y. Hirano
  6. submitted Some results on quasi-duo rings Y. Lee;C. Huh
  7. Pacific J. Math. v.54 no.1 On the von Beumann regularity of rings with regular prime factor rings J. W. Fisher;R. L. Snider
  8. J. Algebra v.103 On rings whose projective modules have the exchange property J. Stock
  9. Proc. Amer. Math. Soc v.35 A characterization of exchange rings G. S. Monk
  10. Comment Math. Helv. v.43 Epimorphismen von kommutativen Ringen H. H. Storrer
  11. Comm. in Algebra v.28 no.10 On minimal strongly prime ideals C. Y. Hong;T. K. Kwak
  12. J. Pure and Appl. Algebra v.115 Regularity conditions and the simplicity of prime factor rings
  13. Math. Ann. v.199 Exchange rings and decompositions of modules R. B. Warfield
  14. Proc. Biennial Ohio State-Denision Conference Completely prime ideals and associated radicals G. F. Birkenmeier;H. E. HeatherlyE. K. Lee
  15. Comm. Algebra v.25 no.2 On the structure of exchange rings
  16. Pure and Appl. Math. Sci. v.ⅩⅩⅠ no.1-2 Weakly right duo rings Xue Yao
  17. Math. J. Okayama Univ. v.32 Some characterizations of π-regular rings of bounded index
  18. J. Pure and Applied Algebra v.146 On weak π-regularity of rings whose prime ideals are maximal C. Y. Hong;N. K. Kim;T. K. Kwak;Y. Lee
  19. Arch. Math. v.66 On rings whose prime radical contains all nilpotent elements of index two Y. Hirano;D. V. Huynh;J. K. Park
  20. Proc. Amer. Math. Soc. v.122 A connection between weak regularity and the simplicity of prime factor rings G. F. Birkenmeier;J. Y. Kim;J. K. Park
  21. Trans. Amer. Math. Soc. v.229 Lifting idempotents and exchange rings W. K. Nicholson

Cited by

  1. Exchange Ideals with All Idempotents Central vol.20, pp.04, 2013,
  2. On Uniquely Clean Rings vol.39, pp.1, 2010,