DOI QR코드

DOI QR Code

STABLE RANKS OF MULTIPLIER ALGEBRAS OF C*-ALGEBRAS

  • Sudo, Takahiro (Department of Mathematical Sciences Faculty of Science University of the Ryukyus)
  • Published : 2002.07.01

Abstract

We estimate the stable rank, connected stable rank and general stable rank of the multiplier algebras of $C^{*}$-algebras under some conditions and prove that the ranks of them are infinite. Moreover, we show that for any $\sigma$-unital subhomogeneous $C^{*}$-algebra, its stable rank is equal to that of its multiplier algebra.

Keywords

stable rank;multiplier;group $C^{}$ */-algebras;subhomogeneous $C^{}$ */-algebras

References

  1. J. Funct. Anal. v.13 Multipliers of C[sup*]-algebras C. A. Akemann https://doi.org/10.1016/0022-1236(73)90036-0
  2. North-Holland C[sup*]-algebras
  3. J. London Math. Soc. v.52 Rangs stables de certaines extensions N. Elhage Hassan https://doi.org/10.1112/jlms/52.3.605
  4. Fields Institute Monographs 8 Lifting Solutions to Perturbing Problems in C[sup*]-Algebras T. A. Loring
  5. Canad. J. Math. v.39 A cancellation theorem for projective modules over the group C[sup*]-algebras of certain nilpotent Lie groups A. J-L. Sheu https://doi.org/10.4153/CJM-1987-018-7
  6. Math. Scand. v.84 Stable rank of the C[sup*]-algebras of amenable Lie groups of typeⅠ https://doi.org/10.7146/math.scand.a-13877
  7. J. Operator Theory v.38 Stable rank of the C[sup*]-algebras of sovable Lie groups of typeⅠ
  8. Rocky Mountain J. Math. v.30 The general stable rank in nonstable K-theory Yifeng Xue https://doi.org/10.1216/rmjm/1022009295
  9. J. Math. Soc. Japan v.52 Dimension theory of group C[sup*]-algebras of connected Lie groups of typeⅠ https://doi.org/10.2969/jmsj/05230583
  10. Preprint Structure of group C[sup*]-algebras of the generalized Dixmier groups
  11. Academic Press Noncommutative Geometry A. Connes
  12. Academic Press C[sup*]-algebras and operator theory G. J. Murphy
  13. J. Funct. Anal. v.99 C[sup*]-algebras of real rank zero L. G. Brown;G. K. Pedersen https://doi.org/10.1016/0022-1236(91)90056-B
  14. J. Operator Theory v.46 Structure of group C[sup*]-algebras of Lie semi-direct products C[sup n]×R
  15. To appear Ranks of direct products of C[sup*]-algebras
  16. Second Edition K-Theory for Operator algebras B. Blackadar
  17. Academic Press Dimension Theory K. Nagami
  18. Indiana Univ. Math. J. v.25 On the C[sup*]-algebras of operator fields R. Lee https://doi.org/10.1512/iumj.1976.25.25026
  19. I. Pacific J. Math. v.77 Representations of the Mautner group L. Baggett https://doi.org/10.2140/pjm.1978.77.7
  20. J. Operator Theory v.17 Stable rank for a certain class of type I C[sup*]-algebras
  21. Preprint Ranks and embeddings of C[sup*]-algebras of continuous fields
  22. J. Operator Theory v.17 the homotopy groups of the unitary groups of non-commutative tori
  23. C. R. Acad. Sci. v.252 Sur le revetement universel d'un groupe de Lie de type Ⅰ J. Dixmier
  24. Academic Press C[sup*]-Algebras and their Automorphism Groups G. K. Pedersen
  25. Proc. Amer. Math. Soc. v.125 Stable rank of the reduced C[sup*]-algebras of non-amenable Lie groups of typeⅠ T. Sudo https://doi.org/10.1090/S0002-9939-97-04034-3
  26. J. Funct. Anal. v.36 The structure of imprimitivity algebras P. Green https://doi.org/10.1016/0022-1236(80)90108-1
  27. Canad. J. Math. v.XLI On the structure of projections and ideals of corona algebras Shuang Zhang
  28. Oxford Univ. Press K-Theory and C[sup*]-Algebras N. E. Wegge-Olsen
  29. Proc. London Math. Soc. v.46 Dimension and stable rand in the K-theory of C[sup*]-algebras M. A. Rieffel https://doi.org/10.1112/plms/s3-46.2.301
  30. Internat. J. Math. v.6 Stable rank of the C[sup*]-algebras of nilpotent Lie groups T. Sudo;H. Takai https://doi.org/10.1142/S0129167X95000158
  31. J. Operator Theory v.16 Stable range for tensor products of extensions of K by C(X) V. Nistor
  32. Cambridge University Press Dimension theory of general spaces A. R. Pears
  33. Sci. Math. Japon. v.54 Structure of group C[sup*]-algebras of the generalized disconnected Dixmier groups

Cited by

  1. THE CONNECTED STABLE RANK FOR BANACH*-ALGEBRAS INVOLVING ISOMETRIES vol.03, pp.01, 2010, https://doi.org/10.1142/S179355711000012X