Evaluation and Test of Slenderness Ratio Effect on Buckling Characteristics of Thin Cylindrical Structures Subjecting the Shear Loads

전단하중을 받는 얇은 원통구조물의 세장비에 따른 좌굴특성 평가 및 시험

  • Published : 2002.09.01

Abstract

The purpose of this paper is to investigate the slenderness ratio effect on buckling characteristics of thin cylindrical structures subjecting the shear loads in detail. To do this, the buckling strength evaluations were carried out with using the evaluation formulae proposed by J. Okada. From the results of the buckling strength evaluations, the three types of staled cylindrical test specimen, which have L/R=3.1, 1.6, and 1.0, are determined for the numerical analyses and tests. From results, target slenderness ratio over L/R=3 results in dominant bending buckling mode, smaller slenderness ratio under L/R=1 results in dominant shear buckling mode, and near L/R=1.6 region shows the mixed buckling mode which has the bending and shear buckling mode simultaneously. Most results of buckling characteristics obtained by the numerical analyses and the evaluation formulae we in good agreement with those of tests.

본 논문의 목적은 전단하중을 받는 얇은 원통구조물의 세장비에 따른 좌굴특성을 보다 깊이 있게 검토하는 것이다. 이를 위하여 J. Okada 등이 제안한 좌굴평가식을 사용하여 세장비에 따른 좌굴강도 평가를 수행하였다. 좌굴강도 평가 결과들로부터 세장비 L/R=3.1, 1.6, 그리고 1.0을 갖는 세가지 좌굴시험체를 결정하고 이에 대한 수치해석과 좌굴특성시험을 수행하였다. 그 결과, 세장비 L/R=3 이상인 경우 평가식에서 예측된 바와 같은 굽힘좌굴이 지배적으로 나타났으며 세장비 L/R=1.0이하로 작을 경우에는 전단좌굴이 지배적으로 나타났고, 세장비 L/R=1.6 영역에서는 전단과 굽힘좌굴이 동시에 발생하는 복합자굴 특성이 나타났다 그리고 수치해석과 평가식에 의한 좌굴특성평가 결과는 시험결과들과 잘 일치하였다.

References

  1. ASME Boiler and Pressure Vessel Code Section III, Subsection NH, 1995
  2. J. Okada, K. Iwata, et.al, 'An Evaluation Method for Elastic-Plastic Buckling of Cylindrical Shells under Shear Forces,' Nuclear Engineering and Design, Vol. 157, 1995, pp. 65-79 https://doi.org/10.1016/0029-5493(95)00985-L
  3. K. Tsukimori, 'Analysis of the Effects of Interaction between Shear and Bending Load on the Buckling Strength of Cylindrical Shells,' Nuclear Engineering and Design, Vol. 165, 1996, pp.111-141 https://doi.org/10.1016/0029-5493(96)01201-0
  4. T. Murakami, et al, 'The Effects of Geometrical Imperfection on Shear Buckling Strength of Cylindrical Shells,' Proc. SMiRT-11, Vol. E, 1991
  5. G. H. Koo, B. Yoo and J. B. Kim, 'Buckling Limit Evaluation for Reactor Vessel of KALIMER Liquid Metal Reactor Under Lateral Seismic Load,' Int. Journal of Pressure Vessels and Piping, Vol. 78, 2001, pp.321-330 https://doi.org/10.1016/S0308-0161(01)00049-7
  6. ASME Code Case N284-1 Metal Containment Shell Buckling Design Methods, Class MC Section III, Division I
  7. RCC-MR Section I, Subsection B : Class 1 Components, 1985
  8. RCC-MR, Appendix 7, Analyses taking Account of Buckling, 1985
  9. H. Akiyama, H. Phtsubo, etc., 'Outline of the Seismic Buckling Design Guideline for FBR - Tentative Draft,' SMIRT-11 Conference, E09/1, 1991, pp.239-250
  10. S. P. Timoshenko et al., Theory of Elastic Stability, McGraw-Hill, 2nd edn, 1961
  11. N. Yamaki, Elastic Stability of Circular Cylindrical Shells, North-Holland Series in Applied Math. And Mech, 1984
  12. ANSYS User's Manual for Revision 5.1, Volume I,II,III