DOI QR코드

DOI QR Code

A Study on the Structural Characteristics of the Hollow Casket made of Silicon Rubber

실리콘 중공 가스켓의 구조적 특성에 관한 연구

  • 이승하 (LG이노텍㈜ 구미연구소) ;
  • 이태원 (금오공과대학교 기계공학부) ;
  • 심우진 (금오공과대학교 기계공학부)
  • Published : 2002.10.01

Abstract

In this paper, the deformed shape, the contact forces and the load-displacement curves of the real hollow gasket made of silicon rubber are analyzed using a commercial finite element program MARC. In the numerical analysis, the silicon rubber is assumed to have the properties of the geometric and material nonlinearity and the incompressibility, and the hyperelastic constitutive relations of that material are represented by the generalized Mooney-Rivlin and Ogden models. The outer frictional contact between the hollow gasket and the groove of rigid container and the inner self-contact of the hollow gasket are taken into account in the course of numerical computation. Experiments are also performed to obtain the material data for numerical computation and to show the validity of the mechanical deformation of the hollow gasket, resulting in good agreements between them.

Keywords

Silicon Hollow Gasket;Self-Contact;Hyper-Elastic Material;Mooney-Rivlin Model;Ogden Model;Largo Deformation;Finite Element Method

References

  1. Shin, S. J., Lee, T. S. and Oh, S. I., 1998, ' Three-dimensional Finite Element Analysis of Rubber Pad Deformation (2),' Transactions of the KSME A, Vol. 22, No.1, pp. 111-131
  2. Kim, T. W., Moon, S. M., Koo, Y. P. and Cho, Y. J., 2001,' Finite Element Analysis for Performance Evaluation of the Seal in a Universal Joint Bearing,' J. KSPE., Vol. 18, No.9, 140-146
  3. Hertz, H., 1895,' On the Contact of Rigid Elastic Solids and on Hardness,' Gesammetlte Werke, Vol. 1, Lepzig
  4. Bathe, K. J. and Chaudhary, A., 1985,' A Solution Method for Planar and Axisymmetric Contact Problems,' Int. J. Num. Meth. Eng., Vol. 21, pp. 65-88 https://doi.org/10.1002/nme.1620210107
  5. Hermann, L. R., 1965,' Elasticity Equations for Incompressible and Nearly Incompressible Materials by a Variational Theorem,' AIAA J., Vol. 3, No. 10, pp. 1896-1900 https://doi.org/10.2514/3.3277
  6. Czernik, D. E., 1996, Gaskets, Vol.1, McGraw-Hill
  7. Ogden, R. W., 1984, Non-linear Elastic Deformations, Halsted Press, New York
  8. Scharnhorst, T. and Pian, T. H. H., 1978, ' Finite Element Analysis of Rubberlike Materials by a Mixed Model,' Int. J. Num. Meth. Eng., Vol. 12, PP. 665-676 https://doi.org/10.1002/nme.1620120410
  9. Belytschko, T., Liu, W. K., and Moran, B., 2000, Nonlinear Finite Elements for Continua and Structures, Wiley, New York
  10. Bathe, K. J., 1996, Finite Element Procedures, Prentice-Hall
  11. 'Non-Linear Finite Element Analysis of Elastomers,' 1996, MARC Analysis Research Corporation
  12. Lee, H. W., Kim, S. H., Lee, C. H., Hun, H., Lee, J. H. and Oh, S. T., 1997,' Finite Element Analysis for 3-D Self-Contact Problems of C. V. Joint Rubber Boots,' Transactions of the KSME A, Vol. 21, No. 12, pp. 2121-2133
  13. Kim, S. H., Lee, H. W., Huh, H., Lee, J. H. and Oh, S. T., 1998,' Stress Analysis of C.V. Joint Rubber Boots by Finite Element Method and Application to Design Modification,' Transactions of the KSAE, Vol. 6, No.3, pp. 123-137
  14. Shin, S. J., Lee, T. S. and Oh, S. I., 1998, ' Three-dimensional Finite Element Analysis of Rubber Pad Deformation (1),' Transactions of the KSME A, Vol. 22, No.1, pp. 111-131