DOI QR코드

DOI QR Code

Ambrosetti-Prodi형의 해의 다중존재문제

  • 김완세 (한양대학교 자연과학대학 수학과)
  • Published : 2002.10.01

Abstract

본 개관에서는 Ambrosetti-Prodi형의 해의 다중존재성에 관하여 살펴볼 것이다.

Keywords

Ambrosetti-Prodi type multiplicity;elliptic;parabolic;hyperbolic boundary value problem

References

  1. J. Diff. Eq v.69 no.3 Generalized Ambrosetti-Prodi condi-tions for nonlinear two-point boundary value problems R. Chiapiiinelli;J. Mawhin;R. Nugari https://doi.org/10.1016/0022-0396(87)90127-6
  2. J. Nonlin. Anal v.8 On the superlinear Ambrosetti-prodi problem https://doi.org/10.1016/0362-546X(84)90010-5
  3. Diff. Int. Eq v.1 no.1 A multiplicity result for periodic solutions of higher order ordernary differential equations S.H. Ding;J. Mawhin
  4. Czechoslovak Math J. v.37 no.112;3 Superlinear elliptic boundary value problems R. Kannan;R. Ortega
  5. J. Diff. Eq v.52 Multiple solutions of the periodic boundary value problem for nonlinear first order ordinary differential equations J. Mawhin;M. Willem https://doi.org/10.1016/0022-0396(84)90180-3
  6. J. Math. Anal. Appl v.197 Multiple doubly periodic solutions of semilinear dissipative hyperbolic equations https://doi.org/10.1006/jmaa.1996.0049
  7. Boll. Un. Mat. Ital. v.II Remark on a result S. Fucik;A. Ambrosetti;G. Prodi
  8. Ssinetia Sinicqa A-26 Variational methods and sub-and super-solutions K.C. Chang
  9. Math. J. v.24 On the solution of a nonlinear Dirichlet problem M.S. Berger;E. Podolak
  10. J. math. Pures Appl. v.57 On the range of certain weakly nonlinear elliptic partial differential equations E.N. Dancer
  11. Nonlinear Analysis T.M.A. v.26 no.6 Existence of stable and unstable solutions for semilinear parabolic prob-lems with a jumping nonlinearity https://doi.org/10.1016/0362-546X(94)00284-O
  12. Springer Lecture Notes in Mathematics v.568 Coincidence drgree and nonlinear differential equa-tions R.E. Gaines;J. Mawhin
  13. Doctorial Thesis Ambrosetti-Prodi type results for periodic solutions of second-order ordirnary differential system Y.H. Lee
  14. J. Math. Anal. Appl. v.140 A generalized upper and lower solutions methods and multi-plicity results for nonlinear first order ordinary differential equations M.N. Nakashama https://doi.org/10.1016/0022-247X(89)90072-3
  15. Comm. Partial Differential Equations v.9 Variational approach to superlinear elliptic problems D.G. De Figueiredo;S. Solomini https://doi.org/10.1080/03605308408820345
  16. Rocky Mountain J. Math v.12 Nonuniform resonance conditions at the two first eigenvalues for periodic solutions of forced Lienard and Duffing equations J. Mawhin;J.R. Ward https://doi.org/10.1216/RMJ-1982-12-4-643
  17. Mono-grapi 41/42 Erzwungene Schwingungen bei veranderlicher Eigenfrequenz G. Duffing
  18. Appl. Anal v.6 no.1 Multiplicity result for periodic solutions of semilinear parabolic equ-tions
  19. Sem. Math. Sup no.92 Pooints fixes, points critiques et a problemes aux limites J. Mawhin
  20. Lecture Note in Math v.1324 Introduction to multiplicity theory for boundary value problems with asymetric nonlinearities A.C. Lazer https://doi.org/10.1007/BFb0100789
  21. Dis-crete and Continuous Dynamical System v.2 no.2 Multiplicity and stability result for semilinear parabolic equations https://doi.org/10.3934/dcds.1996.2.271
  22. Huston J. Math Multiple existence of periodic solutions for semilinear parabolic equations with small nonlinear term
  23. Math. Ann v.261 variational and topological methods in partially ordered banach space H. Hofer https://doi.org/10.1007/BF01457453
  24. J. Reine Angew. Math v.368 Multiplicity of solutions of nonlinear boundary value problems with non-linearities crossing several higher eigenvalues
  25. J. Nonlinear Anal v.6 pertubations with some superlinear growth for a class of second order elliptic boundary value problems J.R. Ward https://doi.org/10.1016/0362-546X(82)90022-0
  26. Z. Angew. Math. Phys. v.38 First order ordinary differential equations with several periodic solutions https://doi.org/10.1007/BF00945410
  27. SIAM J. Math. Anal v.17 no.6 Multiplicity of solutions of nonlinear boundary valve problems D.C. Hart;A.C. Lazer;P.J. Mckenna https://doi.org/10.1137/0517093
  28. J. Math. Anal. Appl v.84 On the number of solutions of a nonlinear Dirich-let problem A.C. Lazerand;P.J. McKenna https://doi.org/10.1016/0022-247X(81)90166-9
  29. Ann, Mat. Pura. Appl v.93 On the inversion of some differential mappings with singularities between Banach space A. Ambrosetti;G. Prodi
  30. Proc. Roy. Soc. Edinburgh Sect. v.A95 no.3;4 On a conjecture related to the number of a nonlinear Dirchlet problem
  31. Ph. D. Thesis, Louvain-la Neuve Conditions de resonance ou de non-resonance non-uniforms et solu-tions periodique d, equations fifferentielles non lineaires
  32. Atas do 12° Seminario Brasileiro de Analise, Sao Paulo Lecture on boundary value problems of the Ambrosetti Prodi type
  33. Arch. Math (Basel) v.41 Periodic solutions of some forced Lienard differential equations at reso-nance https://doi.org/10.1007/BF01371406
  34. Commu. PDE v.10 no.2 Critical point theory and boundary value problems with nonlinearities crossing multiple eigenvalues https://doi.org/10.1080/03605308508820374
  35. Differential and Integral Eq v.8 no.7 Multiple existense of periodic solutions for Lienard system N. Hirano;W.S. Kim
  36. J. Math. Anal. Appl v.107 no.2 Multiplicity results for a class of semilinear elliptic and parabolic bound-ary value problems
  37. Nonlinear Analysis T.M.A. v.9 no.4 Multiplicity results for a semilinear boundary value problem with the nonlinearity crossing higher eigenvalues https://doi.org/10.1016/0362-546X(85)90058-6
  38. Multiple existence of periodic solutions for semilinear parbolic equations with small nonlinear term
  39. Bo. Soc. Brasil. Mat v.12 Sharp existence results for a class of semilinear elliptic problems H. Berestycki;P.L. Lions https://doi.org/10.1007/BF02588317
  40. J. of Diff. Eq v.18 On periodic solutions of forced pendulum-like equa-tions G. Fourier;J. Mawhin
  41. Masson et Cie v.VI E'quations Differ'entielles Ordinaires I,II N. et Rauch;J. Mawhin
  42. J. Diff. Eq v.13 Periodic boundary value problems for system of second order differential equations J.W. Bebernes;K. Schmitt https://doi.org/10.1016/0022-0396(73)90030-2
  43. Diff. Int. Eq v.1;2 Multiple periodic solutions for some nonlinear ordi-nary differential equations of higher order M. Ramos;L. Sanchez
  44. Comm. Appl. Math. v.28 Remarks on some qusilinear elliptic equations J.L. Kazan;F.W. Warner https://doi.org/10.1002/cpa.3160280502
  45. Proc. Roy. Soc. Edin v.110A Periodic solutions of forced Lienard equations with jumping nonlinearities under nonuniform condi-tions R. Iannacci;M.N. Nkashama;P. Omari;F. Zanolin
  46. Proc. R. Soc. Edinb v.84A A Multiplicity result for a class of elliptic boundary valve problems H. Amann;P. Hess
  47. Boll. U.M.I. v.3-B no.7 Stability and index of periodic solutions of an equation of Duffing type R. Ortega
  48. Lecture Note Math v.964 Periodic oscillations of forced pendulum-like equations https://doi.org/10.1007/BFb0065017
  49. Bull. London Math. Soc v.18 A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations C. Fabry;J. Mawhin;M.N. Nkashama https://doi.org/10.1112/blms/18.2.173
  50. Semin. Math. U.C.L. (NS) no.79 Finiteness of the set of solutions of some boundary value problems for ordinary differential equations L. Brull;J. mawhin
  51. J. Reine Angew. Math v.350 Degenerate critical points, homotopy indices, and Morse inequalities
  52. nonlinear Analysis T.M.A. v.7 Existence of a third solutions for a class of boundary value problems with jumping nonlinearities S. Solimini https://doi.org/10.1016/0362-546X(83)90067-6
  53. Multiple existence of periodic solutions for a nonlinear parabolic problem with singular nonlinearities https://doi.org/10.1016/S0362-546X(03)00101-9
  54. Proc. International Conference v.1285 Ambrosetti-Prodi type result in nonlinear boundary value problems https://doi.org/10.1007/BFb0080609
  55. Inter. J. Math. Math., Sci. v.18 no.2 Existence of periodic solutions for nonlinear Lienard system W.S. Kim https://doi.org/10.1155/S0161171295000329