DOI QR코드

DOI QR Code

DETERMINANT OF INCIDENCE MATRIX OF NIL-ALGEBRA

  • Published : 2002.10.01

Abstract

The incidence matrices corresponding to a nil-algebra of finite index % can be used to determine the nilpotency. We find the smallest positive integer n such that the sum of the incidence matrices Σ$\_$p/$\^$p/ is invertible. In this paper, we give a different proof of the case that the nil-algebra of index 2 has nilpotency less than or equal to 4.

Keywords

incidence matrix;nil-algebra;nil-index

References

  1. Proceedings dedicated to the sixtieth birthday of a academican L.Iliev, Sofia On the Nagata-Higman therorem in Mathematical Structures-Computational Mathematics-Mathematical Modeling E.N. Kuzmin
  2. Izv. Akad. Nauk SSSR v.38 Trace identities of full matrix algebras over a field of character-istics zero Y.P. Razmyslov
  3. Commun. Korean Math. Soc v.15 no.1 Center symmetry of incidence matrices W. Lee
  4. Adv. Math v.19 The invariant theory of n×n matrices C. Procesi https://doi.org/10.1016/0001-8708(76)90027-X
  5. Proc. Cambridge Philos. Soc v.52 On a conjecture of Nagata G. Higman https://doi.org/10.1017/S0305004100030899
  6. J. Math. Soc. Japan v.4 On the nilpotency of nil-algebras M. Nagata https://doi.org/10.2969/jmsj/00430296
  7. English transl., Izv. Math. v.8 Y.P. Razmyslov