DOI QR코드

DOI QR Code

TRANSNORMAL SYSTEMS IN SEMI-RIEMANNIAN SPACES

  • Park, Kwang-Sung (Department of Mathematics, Keimyung University)
  • Published : 2002.10.01

Abstract

In this paper, we study transnormal systems on the Euclidean and semi-Euclidean spaces. We classified transnormal systems on Rf" . We also prove that transnormal systems on R$\^$n/$\sub$p/ are algebraic even though there are non-algebraic isoparametric hypersurfaces.

Keywords

transnormal system;transnormal function;isoparametric function;semi-Riemannia;null-cylinder

References

  1. Math. Ann v.277 Isoparametric functions on Riemannian manifolds Q. Wang https://doi.org/10.1007/BF01457863
  2. Pacific J. Math v.118 no.1 Lorentzian isoparametric hypersurfaces M. Magid https://doi.org/10.2140/pjm.1985.118.165
  3. Math. Ann v.284 Isoparametric families on projective spaces K. Park https://doi.org/10.1007/BF01442500
  4. Glasgow Math. J. v.35 Quadratic isoparametric systems in Rp n+1 M. Kashani https://doi.org/10.1017/S001708950000968X
  5. Math. Z. v.187 Isoparametric hypersurfaces in the pseudo-Riemannian space forms J. Hahn https://doi.org/10.1007/BF01161704
  6. Quart. J. Math. Oxford Ser. bf 24 no.2 Transnormal systems J. Bolton https://doi.org/10.1093/qmath/24.1.385
  7. Proc. of L.M.S. v.51 no.3 Isoparametric systems and transnormality S. Carter & West https://doi.org/10.1112/plms/s3-51.3.520
  8. Japan J. Math v.7 On isoparametric hypersurfaces in the Lorentzian space forms K. Nomizu https://doi.org/10.4099/math1924.7.217
  9. Glasgow Math J. v.35 Isoparametric functions and submanifolds https://doi.org/10.1017/S0017089500009691
  10. Math. Z. v.45 Sur les familles remarquables d'hypersurfaces isoparametri-ques dans les espaces spherques E. Cartan https://doi.org/10.1007/BF01580289