• Im, Jang-Hwan (Graduate School of Advanced Imaging Science Multimedia, and Film, Chung-Ang University)
  • Published : 2002.10.01


There are many models to study topological $R^2$-planes. Unlike topological $R^2$-planes, it is difficult to find models to study topological R$^3$)-spaces. If an 4-dimensional affine plane intersects with R$^3$, we are able to get a geometrical structure on R$^3$ which is similar to R$^3$-space, and called $R^2$-divisible R$^3$-space. Such spatial geometric models is useful to study topological R$^3$-spaces. Hence, we introduce some classes of topological $R^2$-divisible R$^3$-spaces which are induced from 4-dimensional anne planes.


topological geometry;spatial gemetry


  1. Resultate der Math v.6 Einbettung von topologischen Raumgeometrien auf R³ in den reellen affinen Raun D. Betten;C. Horstmann
  2. Dissertation Topologische Differenzenfichenebenen mit nichtkommutativer Stand-gruppe N. Knarr
  3. Math. Z. v.121 Kollineationsgruppen kompakter 4-dimensiionaler Ebenen
  4. 4-dimensional compact projective planes of orbit type(1,1) D. Betten;B. Polster
  5. Singular Homology Theory W.S. Massey
  6. Note di Matematica v.15 no.2 A class of topological space geometries J.-H. Im
  7. Simon Stevin v.55 Topologische Geometrien auf 3-Mannigfaltigkeiten D. Betten
  8. Abh. Math. Sem. Ham-burg v.28 Zur Klassifikation topologischer Ebenen III H. Salzmann
  9. Dissertation Continuous planar functions B. Polster
  10. Adv. in Math v.2 Topological planes
  11. Compact Projective Planes, De Gruyter H. Salzmann
  12. Geom. Ded v.16 4-dimensionale projective Ebenen mit 3-dimensionaler Translations-gruppe
  13. Math. Z. v.117 Kollineationsgruppen kompakter vier-dimensionaler Ebenen
  14. Atti. Sem. Mat. Fis. Modena v.24 Flexible Reumgeometrien
  15. Resultate der Math v.12 Einige Klassen topologischer 3-Rame
  16. The geometry of geodesics H. Busemann