DOI QR코드

DOI QR Code

REIDEMEISTER CLASSES FOR COINCIDENCE

  • Published : 2002.10.01

Abstract

We generalize algebraic results of Nielsen fixed point theory to Nielsen coincidence theory. We use the algebraic methods of D. Ferrario in Nielsen fixed point theory.

References

  1. Scott, Foresman and Glenview Ill The Lefchetz Fixed Point Theorem R.F. Brown
  2. Fund. Math v.158 Computing Reidemeister classes D. Ferrario
  3. Pacific J. Math v.117 no.2 Product formular for Nielsen numbers of fibre maps P.R. Heath https://doi.org/10.2140/pjm.1985.117.267
  4. Topology Appl. v.67 Addition formulae for Nielsen numbers and Nielsen-type numbers of fibre preserving maps P.R. Heath;E. Keppelmann;P.N.S. Wong https://doi.org/10.1016/0166-8641(95)00019-8
  5. Topology Appl. v.95 Coincidence theory on the complement J. Guo;P.R. Heath https://doi.org/10.1016/S0166-8641(98)00006-6
  6. Homotopy Theory S.T. Hu
  7. Fund. Math. v.134 The Nielsen number product formula for coincidences J. Jezierski
  8. Contemp. Math. Amer. Math. Soc., Providence v.14 Lectures on Nielsen Fixed Point Theory B.J. Jiang
  9. The Theory of Fixed Point Classes T.H. Kiang
  10. Bull. Korean Math. Soc. v.36 no.4 A study on Reidemeister operation S.H. Lee
  11. Homology Theory J. Vick
  12. Amer. J. Math v.120 Fixed-point theory for homogeneous spaces P. Wong https://doi.org/10.1353/ajm.1998.0008
  13. Pacific J. Math v.100 Fixed point classes of a fiber map C.Y. You https://doi.org/10.2140/pjm.1982.100.217