DOI QR코드

DOI QR Code

NONLOCAL CAUCHY PROBLEM FOR SOBOLEV TYPE FUNCTIONAL INTEGRODIFFERENTIAL EQUATION

  • Balachandran, K. ;
  • Park, Jong-Yeoul
  • Published : 2002.11.01

Abstract

In this paper we prove the existence and uniqueness of a mild solution of a functional differential equation of Sobolev type with nonlocal condition using the semigroup theory and the Banach fixed point principle.

Keywords

$C^0$ semigroup;Banach fixed point principle;functional integrodifferential equation;Sobolev type;nonlocal condition

References

  1. Proc. Indian Acad. Sci. (Math. Sci.) v.110 Existence of solutions of nonlinear integrodifferential equations of Sobolev type with nonlocal condition in Banach spaces K. Balachandran;K. Uchiyama https://doi.org/10.1007/BF02829493
  2. Bull. Korean Math. Soc. v.28 Approximate controllability and controllability for delaty Volterra systems T. C. Kwun;J. Y. Park;J. W. Ryu
  3. J. Math. Anal. Appl. v.210 Global existence of semilinear evolution equation with nonlocal conditions S. K. Ntouyas;P. Ch. Tsamatos https://doi.org/10.1006/jmaa.1997.5425
  4. J. Math. Anal. Appl. v.93 A partial functional differential equation of Sobolev type J. H. Lightbourne Ⅲ;S.M.Rankin Ⅲ https://doi.org/10.1016/0022-247X(83)90178-6
  5. Bull. Korean Math. Soc. Existence of a mild solution of a functional integrodifferential equation with nonlocal condition K. Balachandran;J. Y. Park
  6. J. Appl. Math. Stoch. Anal. v.10 Existence of solution of nonlinear integrodifferential equation with nonlocal conditions https://doi.org/10.1155/S104895339700035X
  7. J. Appl. Math. Stoch. Anal. v.10 On a mild solution of a semilinear functional differential evolution nonlocal problem L. Byszewski;H. Akca https://doi.org/10.1155/S1048953397000336
  8. Bull. Korean Math. Soc. v.36 Controllability of integrodifferential equations in Banach space H. K. Han;J. Y. Park;D. G. Park
  9. Dynamic System and Applications v.5 Existence, uniqueness and asymptotic stability of solutions of abstract nonlocal Cauchy problem
  10. Indian J. Pure Appl. Math. v.27 Existence of solution of a delay differential equation with nonlocal condition K. Balachandran;M. Chandrasekaran
  11. J. Math. Anal. Appl. v.162 Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem L. Byszeqski https://doi.org/10.1016/0022-247X(91)90164-U
  12. SIAM J. Math. Anal. v.3 Existence and representation theorem for a semilinear Sobolev equation in Banach space R. E. Showalter https://doi.org/10.1137/0503051
  13. Kybernetika v.34 Controllability of functional differential systems of Sobolev type in Banach Spaces K. Balachandran;J. P. Dauer
  14. Nonlinear Analysis, Theory, Methods and Appl. v.26 Semilinear integrodifferential equations with nonlocal Cauchy problem Y. Lin, J. H. Liu https://doi.org/10.1016/0362-546X(94)00141-0
  15. Tamkang J. Math. v.28 Existence and uniqueness of mild and strong solutions of a Volterra integrodifferential equation with nonlocal conditions K, Balachandran;S. Ilamaran
  16. Commun. Korean Math. Soc. v.14 Nonlinear integrodifferential equations of Sobolev type with nonlocal conditions in Banach spaces K. Balachandran;D. G. Park;Y. C. Kwun
  17. J. Differential Equations v.24 A semilinear Sobolev evoluation equations in Banach spaces H. Brill https://doi.org/10.1016/0022-0396(77)90009-2
  18. J. Amth. Anal. Appl. v.172 Existence and uniqueness of solutions to semilinear nonlocal parabolic equations D. Jackson https://doi.org/10.1006/jmaa.1993.1022

Cited by

  1. On Existence of Solutions of Impulsive Nonlinear Functional Neutral Integro-Differential Equations With Nonlocal Condition vol.48, pp.3, 2015, https://doi.org/10.1515/dema-2015-0029