• Bujan-Zadeh, Mohamad Hosin ;
  • Rasoulyar, S.
  • Published : 2002.11.01


Let A be a commutative ring and M an Artinian .A-module. Let $\sigma$ be a torsion radical functor and (T, F) it's corresponding partition of Spec(A) In [1] the concept of Cohen-Macauly modules was generalized . In this paper we shall define $\sigma$-co-Cohen-Macaulay (abbr. $\sigma$-co-CM). Indeed this is one of the aims of this paper, we obtain some satisfactory properties of such modules. An-other aim of this paper is to generalize the concept of cograde by using the left derived functor $U^{\alpha}$$_{I}$(-) of the $\alpha$-adic completion functor, where a is contained in Jacobson radical of A.A.


torsion theory;co-Cohen-Macaulay;local homology modules;Krull dimension;cograde


  1. Publ. Mah. v.36 Adic-completion and some dual domological results
  2. Quart. J. Math. Oxford v.26 no.3 Kull dimension for Artinian modules over quasi local commutative rings R. N. Roberts
  3. Hirosima Math. J. v.6 Matils duality and the width of a module A. Ooishi
  4. Math. Proc. Camb. Phil. Soc. v.108 Some homological properties of complete modules A. M. Simon
  5. Math. Proc. Camb. Phil. Soc. v.111 Artinian modules over commutatuve rings R. Y. Sharp
  6. Honam Math. J. v.20 A generalization of Cohen-Macaulay modules by torsion theory M. H. Bijan-Zadeh;Sh. Payrovi
  7. J. Pure. Appl. Alg. v.149 A note on the dual of Burch's inequality M. Tousi
  8. Proc. Amer. Math. Soc. v.38 Torsion thoery and associated primes P.-J. Cahen
  9. Fomm. in Alg. v.22 no.6 Co-Cohen-Macaulay modules and modules of generalized fraction Z. Tang;H. Zakeri
  10. Quart. J. Maths. Oxford v.24 no.2 Artinian modules and Hilbert polynomials D. Kirby
  11. Lec. Note. Ser. v.145 Homological Questions in local algebra, London Math. Soc J. R. Strooker
  12. Trans. Amer. Math. Soc. v.184 Commutative torsion theory