DOI QR코드

DOI QR Code

TORSION THEORY, CO-COHEN-MACAULAY AND LOCAL HOMOLOGY

  • Bujan-Zadeh, Mohamad Hosin ;
  • Rasoulyar, S.
  • Published : 2002.11.01

Abstract

Let A be a commutative ring and M an Artinian .A-module. Let $\sigma$ be a torsion radical functor and (T, F) it's corresponding partition of Spec(A) In [1] the concept of Cohen-Macauly modules was generalized . In this paper we shall define $\sigma$-co-Cohen-Macaulay (abbr. $\sigma$-co-CM). Indeed this is one of the aims of this paper, we obtain some satisfactory properties of such modules. An-other aim of this paper is to generalize the concept of cograde by using the left derived functor $U^{\alpha}$$_{I}$(-) of the $\alpha$-adic completion functor, where a is contained in Jacobson radical of A.A.

Keywords

torsion theory;co-Cohen-Macaulay;local homology modules;Krull dimension;cograde

References

  1. Publ. Mah. v.36 Adic-completion and some dual domological results
  2. Quart. J. Math. Oxford v.26 no.3 Kull dimension for Artinian modules over quasi local commutative rings R. N. Roberts https://doi.org/10.1093/qmath/26.1.269
  3. Hirosima Math. J. v.6 Matils duality and the width of a module A. Ooishi
  4. Math. Proc. Camb. Phil. Soc. v.108 Some homological properties of complete modules A. M. Simon https://doi.org/10.1017/S0305004100069103
  5. Math. Proc. Camb. Phil. Soc. v.111 Artinian modules over commutatuve rings R. Y. Sharp https://doi.org/10.1017/S0305004100075125
  6. Honam Math. J. v.20 A generalization of Cohen-Macaulay modules by torsion theory M. H. Bijan-Zadeh;Sh. Payrovi
  7. J. Pure. Appl. Alg. v.149 A note on the dual of Burch's inequality M. Tousi https://doi.org/10.1016/S0022-4049(98)00174-1
  8. Proc. Amer. Math. Soc. v.38 Torsion thoery and associated primes P.-J. Cahen
  9. Fomm. in Alg. v.22 no.6 Co-Cohen-Macaulay modules and modules of generalized fraction Z. Tang;H. Zakeri
  10. Quart. J. Maths. Oxford v.24 no.2 Artinian modules and Hilbert polynomials D. Kirby https://doi.org/10.1093/qmath/24.1.47
  11. Lec. Note. Ser. v.145 Homological Questions in local algebra, London Math. Soc J. R. Strooker
  12. Trans. Amer. Math. Soc. v.184 Commutative torsion theory https://doi.org/10.2307/1996400