Polymer (Korea) Vol. 26, No. 4, pp 535–542 (2002)

Kweon Jung Keon*, Young-II Jeong **, Mi-Kyeong Jang, Chang Hyeong Lee***, and Jae-Woon Nah †
Department of Polymer Science & Engineering, Sunchon National University, Sunchon 540-742, Korea
‡Department of Chemical & Environment Engineering, Chosun College of Science & Technology, Gwangju 501-744, Korea
**The Research Institute of Medical Science, Chonnam National University, Gwangju 501-746, Korea
***Department of Medical Devices & Radiation Health, Korea Food & Drug Administration, 5, Nokbeon-dong, Eunpyeong-gu, Seoul 122-704, Korea
† e-mail: jwnah@sunchon.ac.kr
(Received April 9, 2002, accepted May 31, 2002)

ABSTRACT: We have prepared the surfactant-free nanoparticles of poly[DL-lactide-co-glycolide] (PLGA) by dialysis method and their physicochemical properties such as particle size and drug contents were investigated against various solvents. The size of PLGA nanoparticles prepared using dimethylacetamide (DMAc), dimethylformamide (DMF), and dimethylsulfoxide (DMSO) was smaller than that from acetone. Also, the order of drug contents was DMAc > DMF > DMSO = acetone. These phenomena could be expected from the fact that solvent affects the size of nanoparticles and drug contents. The PLGA nanoparticles have a good spherical shapes as observed from scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Also, surfactant-free nanoparticles entrapping norfloxacin (NFx) have a good drug loading capacity without drug on the surface of nanoparticles confirmed by the analysis of X-ray powder diffraction. Release kinetics of NFx used as a model drug was governed not only by drug contents but also by particle size. Also, the biodegradation rate of PLGA nanoparticles prepared from DMF was faster than that prepared from acetone, indicating that the biodegradation of PLGA nanoparticles is size-dependent.

Keywords: poly[DL-lactide-co-glycolide], surfactant-free nanoparticles, dialysis method, norfloxacin, biodegradation.
서 론

생체내의 특정 부위에 약물을 전달함으로써 치료작
용, 유전자치료, 바이러스성 질병, 바이러스 감염과 같
은 수많은 질병의 치료에 효과적으로 이용되는 나노
입자를 위한 관심이 최근 증가하고 있다.1-3 나노입자
는 10-1000 nm의 세포에 해당하는 크기의 입자로 다
른 시스템에 비해 크기가 작기 때문에 주사시로 많이
이 이용되고 있다.4 나노입자를 제조해 주사하였을 경
우 나노입자의 세포 분산은 대부분 생물학적 환경과
입자크기, 나노입자의 표면 전하, 형태, 전수성과 같
은 물리화학적 성질과의 상호작용에 의해 영향을 받
는다.5,6 이러한 약물 전달체를 이용함에 있어서 약물
이 발전한 후에 전달체인 고분자가 세포에 오르기
전체하지만 분해산물에 독성을 임으므로서는 안되며
생체에 적합하고 생체내에서 분해되는 고분자로 이용
하게 되었다. 이 중 poly(α-hydroxy acid) 계열의
poly(DL-lactide) (PLA), poly(glycolide) (PGA)와
그들의 공중합체인 poly(DL-lactide-co-glycolide)
(PLGA)는 생분해성 고분자로 생체에서 섭신함의 형태
로 분해되어 제거되며 미국 식품의약품국(FDA)
의 인가를 받았다.7,8 또한, 제내에 투입하기 좋은 형태
로 가공이 가능하고, 생분해성 기발을 자유자재로 조절
할 수 있다는 장점이 가지고 있다.8

나노입자의 제조는 제조방법이 복잡하고 수용이 낮
으며 크기조절이 어려우므로 효율적인 약물 전달을 위해
새로운 제조방법이 필요하게 연구되어오고 있다. 이제
까지 PLGA를 이용하여 나노입자나 미립자를 만들기
위해 유화상응전법(EMulsion Solvent evaporation)
을 가장 많이 사용하였다.9,10 이 방법은 분산된 입자
를 안정화하기 위해 Span계나 Tween계, poly(ethylene oxide)
(PEO), poloxamer (PEO–poly(propylene oxide) block copolymer)
등과 같은 과장의 계면활성자를 필요로 하며 안정화제로 poly(vinyl alcohol) (PVA)를 많이 사용한다. 그러나, PVA가 미립
자나 나노입자 표면에 난여며 제거하기가 힘들고 생
분해성과 약물 발송 가속자를 빠르게 하는 것으로 알
려져 있다. 또한, 이러한 방법은 용제가 제거가 힘들고
그리고 저장기간, 낮은 입자 회수율, 제조공정
단계의 복잡성, 작은 크기의 구형 입자를 제조하기
위해 다양한 계면활성제가 필요하다는 단점이 있다.11,12

최근 리포좀이나 고분자 미세공과 같은 약물 전달체
를 제조하기 위한 두께법이 보고되었다. 이 방법은
불독나 그래프트 공중합체, 안티바이러스 물질을 이용
하여 적고 강한 입자크기분포를 가진 나노입자를
제조하는 간단하면서도 효과적인 방법으로 알려져 있
다.13-17 일반적으로 폴리에스테르 계통 고분자들의 생
분해도는 분자량, 분자량 분포, 구조형태성 모
플로저, 소수성/전수성 등에 따라 결정된다.18,19

본 연구에서는 여러 가지 용액을 사용하여 제조함
법에 사용하지 않고 PLGA 나노입자를 제조하는 방법
과 오로지의 치료제로 사용되는 norfloxacine (NFx)의
약물 발송 가속을 살펴보고자 하였다. 또한, 약물 전
달체로서의 가능성을 약물 풍부성, 풍부용효, 약물 풍
부 후 PLGA 나노입자의 물리학적 성질과 생분해성
등을 여러 가지 용액에 대해 조사하였다.

실 협

시 각. Lactide와 glycolide 비가 85:15, 75:25, 50:50인 PLGA 공중합체와 NFx는 미국 시그마에서
구입하였다. PLGA 85:15, 75:25, 50:50의 분자량은
아래에서 제시된 것과 같이 GPC로 측정한 결과
48400, 48500, 48070 이었다. 용매로는 Junsei Chemical Co.
로부터 구입한 dimethylformamide (DMF), dimethyl-
acetamide (DMAc), dimethylsulfoxide (DMSO), ace-
tone을 정체없이 1급 사약을 사용하였다.

Gel Permeation Chromatography (GPC) 측정. PLGA
분자량은 1 mL/min의 초고 속도로 Waters Styrage™
HR1, HR2, HR4 엘럼을 사용하여 Waters 410 Di-
fferential Refractometer와 조합한 Waters LC sys-
tem으로 측정하였다. 평균 분자량은 단분산 poly sty-
rene (PS) 표준물질로 한 환산치를 사용하였다.

PLGA 나노입자의 제어와 약물 동일 방법. PLGA
나노입자는 계면활성제를 사용하지 않고 두께법에 의해
용액으로 간편히 제조하였다. PLGA 20 mg의 각각의 용액
10 mL에 용해시켰다. 그 용액을 분리분자량(MWCO)
이 12000 g/mol인 두께막에 넣고 3-4시간 간격으
로 증류수로 교체하면서 24시간 두께 후 동결 건조
하였다. 약물동정성은 다음과 같다.

PLGA 20 mg 각각의 용액 10 mL에 용해시킨 후
20 mg의 NFx를 침구시키고 실온에서 교반시킨

536
 Polymer (Korea) Vol. 26, No. 4, July 2002
다. 이 용액을 MWCO가 12000 g/mol인 두석막에 담고 3~4시간 간격으로 중속수를 교체하면서 24시간 두석후 동결 진조하였다. 약물 흡착량을 측정하기 위해 NFX를 흡착한 PLGA 나노입자의 메탄올에 분산시키고 3시간 동안 교반시킨 후 15분 동안 초음파 (sonication) 시켰다. 최종 용액을 20분 동안 12000 x g로 원심 분리시키고 상층액을 UV 스펙트로포토미터 (Shimadzu UV 1201)를 이용하여 아.arch동 정도를 측정하였다.

PLGA 나노입자의 표면관찰과 특성. 나노입자의 형태는 scanning electron microscopy (SEM) (JEOL, JSM-5400, Japan)와 transmission electron microscopy (TEM) (JEOL, JEM-2000 FX-II, Japan)로 이용하여 관찰하였고, 크기는 photon correlation spectroscopy (PCS) (Zetasizer 3000, Malvern Instruments, England)로 이용하여 측정하였다. 먼저 SEM 관찰을 위해 분산된 NA노입자를 벽어드리고 전후에 Ionen Sputter를 이용하여 gold/palladium으로 4분 동안 20 mA로 코팅한 후 25 kV로 관찰하였다. 그리고 TEM 측정은 0.01% phosphotungustic acid를 함유한 분산된 NA노입자를 copper grid에 벽어드리고 후 80 kV로 관찰하였으며 나노입자의 크기는 25 C, 633 nm (He-Ne laser beam)에서 측정하였으며, 측정 실험은 두석막으로 제조된 나노입자를 여러차례 하고 그대로 측정하였다. 또한 NFX가 흡착한 PLGA 나노입자의 결정성을 위하여 X-ray diffractometer를 측정하였고 X-ray diffractograms는 Rigaku D/max-1200 모델을 이용하였으며 Ni-filtered CuKα radiation (35 kV, 15 mA)를 사용하였다.

In vitro 에서의 방출실험. NFX가 흡착한 PLGA 나노입자의 7 mg을 바닥에 초음파기로 30초 동안 15 W로 2 ml phosphate buffered saline (PBS, 0.1 M, pH 7.4)에서 분산시키고 두석막에 넣었다. 이 두석막을 100 ml의 비어져 낮고 50 ml의 PBS로 채운 다음 37 C, 100 rpm의 속도로 교반시켜서 방출실험이 진행되었다. 약물의 확산을 방지하기 위하여 특정 시간 간격으로 체체 medium (50 ml)을 새로운 동량의 PBS로 교체한다. NFX의 방출 능도를 측정하기 위하여 322 nm에서 UV 스펙트로포토미터로 측정한다. 약물 함유량과 분말 효율을 다음 식에 의해 계산하였다.

\[
\text{Loading content} = \frac{\text{weight of retained drug in the nanoparticles (g)}}{\text{weight of retained drug in the nanoparticles + polymer weight (g)}} \times 100
\]

\[
\text{Loading efficiency} = \left(1 - \frac{\text{weight of retained drug in the nanoparticles (g)}}{\text{initial loading amount of drug (g)}}\right) \times 100
\]

In vitro 에서의 생분해성 실험. In vitro에서 생분해 실험은 위의 방출실험과 같은 조건에서 진행하였다. PLGA 50:50 20 mg을 두가지 용매 (DMF, acetone) 10 ml에 각각 용해시킨 후 MWCO가 12000 g/mol인 두석막에 넣고 중속수로 3시간 동안 두석시키고 24시간 동안 3~4시간 간격으로 중속수를 교체하였다. 이 두석막을 200 ml의 비어져 낮고 100 ml의 PBS (0.1 M, pH 7.4)를 넣은 후 100 rpm, 37 C에서 incubation시키고 incubation하는 동안 동량의 PBS로 교체하였다. 특정 시간 간격으로 두석막을 개어서 6시간 동안 중속수로 두석한 후 동결 진조시켜GPC로 분해량을 측정하였다.

결과 및 고찰

본 연구에서 제조한 계면활성제를 사용하지 않고 두석법에 의해 제조한 PLGA 나노입자의 제조에 있어서 용액의 효과, in vitro에서의 NFX의 방출특성, 그리고 생분해성을 알아보고자 하였다. 용액의 효과를 평가하고자 본 결과는 여러 가지 용액에 사용하여 계면활성제를 사용하지 않고 두석법에 의한 PLGA 나노입자를 제조하였으며, 이러한 나노입자의 쓰레기부분을 약아보고자 PCS를 통하여 임자크기를 분석하였고, TEM과 SEM을 통하여 입자들의 형태를 관찰하였다.

DMF로 제조된 PLGA 85:15 (a), 75:25 (b), 50:50 (c) 나노입자의 TEM 사건 (Figure 1)과 DMSO로 제조된 PLGA 50:50 나노입자 (Figure 2 (a))와 DMAC로 제조된 PLGA 50:50 나노입자 (Figure 2 (b))의 TEM 사건을 Figure 1과 2에 나타내었다. 또한 DMF (a)와 acetone (b)로 제조된 PLGA 50:50의 SEM 사건은 Figure 3에 나타내었다.

Figure 1-3에서 알 수 있듯이 PLGA 나노입자는 계면활성제와 용액을 사용하지 않고도 두석법에 의해서 쉽게 제조됨을 알 수 있었다. TEM 사건은 통합
Figure 1. TEM of PLGA 85:15 (a), 75:25 (b), 50:50 (c) nanoparticles prepared from DMF (bar=100 nm) as an initial solvent.

Figure 2. TEM of PLGA 50:50 nanoparticles prepared from DMSO (a) and DMAC (b) (bar=100 nm) as an initial solvent.

Figure 3. SEM of PLGA 50:50 nanoparticles prepared from acetone (a) and DMF (b) as an initial solvent.
제9장 항생제 사용하지 않는 Poly(DL-lactide-co-glycolide) 나노입자로부터의 Norfloxacin 방출과 생물학적 특성

한 적은 크기의 나노입자를 만들기 위해 본 연구에서
는 고분자와 약물 10 mL의 용액에 용해시켰으며
용액을 분리되지 않는 약물을 완전히 제거하기 위해
다른 순응의 보고보다 더 오랜 시간 두었다.20,21
약물 함유량은 사용한 용액에 따라 다르며 약물 함유량
은 DMAc > DMF > DMSO = acetone 순서이다.

아세톤으로 제조한 나노입자가 큰 사이즈로 인하여
약물 함유량도 낮을 것으로 예상하였으나 실제로는
다양한 유해성 폭을 보였다.20
그리고, 이와 같은 현상은 고분자를
약물 함유량과 동일하게 lactide/glycolide
비에 따라 lactide 비가 높을수록, 약물 함유량

Table 1. Effect of Various Initial Solvents on the
Particle Size Distribution of PLGA Nanoparticles

<table>
<thead>
<tr>
<th>PLGA used initial solvent</th>
<th>particle size (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>intensity average</td>
</tr>
<tr>
<td>50:50 DMAc</td>
<td>185.8±3.56</td>
</tr>
<tr>
<td>50:50 DMF</td>
<td>516.5±97.7</td>
</tr>
<tr>
<td>50:50 acetone</td>
<td>304.2±129.1</td>
</tr>
<tr>
<td>75:25 DMAc</td>
<td>214.0±165.5</td>
</tr>
<tr>
<td>75:25 DMF</td>
<td>287.7±109.5</td>
</tr>
</tbody>
</table>

Table 2. NFX Loading Contents and Loading Efficiency

<table>
<thead>
<tr>
<th>PLGA used initial solvent</th>
<th>drug contents (wt%)</th>
<th>loading efficiency (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50:50 DMAc</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>50:50 DMF</td>
<td>9.7</td>
</tr>
<tr>
<td></td>
<td>50:50 DMAc</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>50:50 acetone</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>75:25 DMF</td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td>83:15 DMF</td>
<td>12.2</td>
</tr>
</tbody>
</table>
Figure 4. X-ray diffractometer patterns of PLGA 50:50 nanoparticles. NFX, PLGA nanoparticles (empty), NFX loaded PLGA nanoparticles (drug loading contents : 4.2 wt%), NFX loaded PLGA nanoparticles (drug loading contents : 9.6 wt%), and physical mixture of NFX/empty PLGA nanoparticles (weight ratio of NFX/polymer=1/10), respectively.

Figure 5. NFX release from PLGA nanoparticles against initial solvents (a) and copolymer composition (b).

내었다. 일반적으로 나노입자로부터의 아목발출은 각 기가 적고 표면적이 적기 때문에 다른 미립자보다 상 대적으로 빠른 것으로 알려져 있다. Figure 5에서는 처 럼 대부분 초기 3-4시간 동안 아목의 파열방출이 일 어나고 12시간에서 24시간 동안 일정하게 아목이 방 출되었다. 이중 DMAc의 경우가 아목 봉입형이 가장 컸으며 4시간 동안 아목과 일정 방출이 일어나고 24시 간 동안 아목이 일정하게 방출되었다. DMSO의 경우 에는 약 초기 1-2시간 동안 파열 방출이 일어나고 12시간 동안 일정하게 아목이 방출되었다. 이러한 아목 발출 속도는 아세톤의 경우를 제외하고 DMSO > DMAc 순서를 보였다. 이러한 결과로 아목 함유량이 높음수록, 아목 방출이 느려질 수 있음을 알 수 있었다. 이러한 현상은 많은 저자들14,17,22 의례에서도 보고 되었으며 소수성 약물이 나노입자 내부에서 결정화를 일으키고 아목 함유량이 많을 때 상장가가 일어나며 약물의 부분 결정화를 일으킨다. 이러한 현상은 입 자크기가 클수록, 높은 약물 함유량, glycolide segments보다 소수성의 lactide segments 사이에서 강 한 소수성 작용에 기인하는 것으로 사료된다. 나노입 자에 풍입된 소수성 약물은 아목 함유량이 클수록 빠 린히 방출되어 친수성인 약물과는 다른 특성을 보인 다. 이러한 결과는 높은 약물 함유량을 가진 나노입 자로부터 NFX 방출이 느리다음을 알 수 있었다.14,24

낮은 약물 함유량에서 NFX는 상대적으로 나노입자의 내부에 분산상태로 나타난다.14 이는 Figure 4의 XRD 패턴에서도 제시하였듯이 낮은 약물 함유량일 때, XRD 패턴은 거의 약물이 없는 나노입자와 비슷 하여 약물 결정 피크가 나타나지 않는다. 반해 높은 약물 함유량일 때는 나노입자에서 결정화된 약물 피 크가 증가하였음을 알 수 있었으며 아목 함유량이 높 을 때는 나노입자 내부에서 약물이 결정화되기도 하고 또한 나노입자의 표면에도 약물이 흡착되어서 나
제연합성체를 사용하지 않는 Poly(DL-lactide-co-glycolide) 나노입자로부터의 Norfloxacin 방출과 생분해 특성

타나는 결과classify로 사료한다. 경화된 약물은 분
상되어있음을 때보다 외부 수용성으로 좀 더 완전히
유해되고 분산된다. 난은 약물 함유량에도 불구하고
아세톤으로 제조한 PLGA 나노입자는 Figure 3 (b)
와 Table 1에서 보여진 적은 입자크기를 가지며 DMSO
와 DMF보다 느린 방출속도를 나타낸다. 같은 약물
함유량이 경우, 큰 나노입자로부터 약물방출속도는
나노입자의 크기가 작을 때보다 느린 것으로 보다고
여길 수 있다. 3,15 경화된세계, 아세톤으로 제조한 PLGA 나
노입자는 DMF로 제조한 것보다 약물 함유량이 작으
나 아세톤으로 제조한 PLGA 나노입자로부터의 약물
방출속도는 DMF보다 느리다. 이는 입자크기의
차이가 약물 전달 시스템에서 나노입자의 약물 방
출속도를 조절하는 중요한 요소임을 알 수 있다. 그
러나, 아세톤으로 제조한 PLGA 나노입자로부터의
약물방출속도가 DMAc로 제조한 것보다 느리지 않
으며 이러한 사례로 말한 것과 DMAc로 만든
PLGA 나노입자의 입자크기 차이가 DMF나 DMSO
로 만든 것보다 상대적으로 적기 때문에 기인하는 것
으로 사료된다. 또한 아세톤으로 만든 것과 DMAc로
만든 것 사례의 약물 함유량이 차이가 크기 때문에
으로 사료된다. 즉, DMAc로 제조한 PLGA 나노입
자의 약물 함유량이 아세톤으로 제조하였을 때보다
상대적으로 크며 이와 같은 결과로 제연합성체를 사
용하지 않는 PLGA 나노입자로부터의 약물방출은 약
물 함유량이 크게 차이가 나지 않을 때 그 입자의 크
기차이에 의해 속도가 조절됨을 알 수 있었다. 그러
나 약물 함유량이 크게 차이가 날때는 PLGA 나노입
자의 약물 방출속도는 상대적으로 입자크기보다는 약
물 함유량에 의해 지배되는 것으로 사료되었다. 결과
적으로 외부 수용성 약물분자의 확산 속도에 의한 차이
때문에 약물 방출속도는 약물 함유량뿐만 아니라 나
노입자 크기에 의해 영향을 받는 것으로 사료된다.

마지막으로 Table 3은 in vitro 상태에서 PLGA 50:50
나노입자의 생분해성을 측정한 결과이다. 일반적으로
PLGA 나노입자의 분해는 lactide/glycolide, 미, 입자의 내외부 모둘로자, 제조방법과 제연합성체
등에 영향을 받는다. 초기의 분해량이 48070이었으나
10일 경후로 DMF로 제조한 나노입자는 40000, 아세톤으로 제조한 나노입자는 41400으로 생분해가
진행되었음을 알 수 있었으며 아세톤으로 제조한 것

Table 3. In Vitro Biodegradation of PLGA 50:50 Nanoparticles against Initial Solvent

<table>
<thead>
<tr>
<th>time (day)</th>
<th>DMSO</th>
<th>acetone</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>48070</td>
<td>48070</td>
</tr>
<tr>
<td>3</td>
<td>46240</td>
<td>47400</td>
</tr>
<tr>
<td>5</td>
<td>41030</td>
<td>46700</td>
</tr>
<tr>
<td>10</td>
<td>40000</td>
<td>41100</td>
</tr>
<tr>
<td>17</td>
<td>35600</td>
<td>38150</td>
</tr>
<tr>
<td>19</td>
<td>35530</td>
<td>37900</td>
</tr>
<tr>
<td>30</td>
<td>28140</td>
<td>30000</td>
</tr>
</tbody>
</table>

보보다 DMF로 제조한 나노입자의 생분해 비가 더
 큰 것으로 보아 생분해성 및 입자크기에 영향을 받
는 것으로 사료된다.

결론적으로, 약물방출 속도의 제어는 사용된 고분
자의 화학적 성질, 약물 함유량, 사용된 용매, 나노입
자의 크기에 의해 달라지는 것으로 사료된다.

결론

제연합성체를 사용하지 않는 PLGA 나노입자를 부
식법에 의해 다양한 용매를 사용하여 제조하였으며
그들의 분해속도를 조사하였다. DMAc, DMF, DMSO로 제조된 PLGA 나노입자 크기는 아세톤으로
제조된 것보다 작았다. 공중합체를 이용하여 여기
해 사용한 용매는 나노입자의 크기와 약물함유량에
 크게 영향을 미치는 것을 알 수 있었다. PLGA 나노
입자는 SEM과 TEM의 측정에서 구형성을 알 수 있
었다 X-ray 회절 경향의 분석으로 제연합성체를 사
용하지 않는 PLGA 나노입자가 약물 전달체로서의
가능성을 확인하였다. 또한 약물로 사용된 NFx의 방
출속도는 약물 분해속도와 약물 입자크기에 판단
개가 있었다. 또한 PLGA 나노입자의 분해속도는 아
세톤보다는 DMF를 사용하였을 때 더 빠르며 이는
PLGA 나노입자의 생분해성 및 입자크기에 좌우된다
을 알 수 있었다.

참고 문헌
1. P. Couvreur, E. Fattal, and A. Andremont, Pharm.