Film Properties of Weather-Resistant Silicone/Acrylic Coating Resins of Different Compositions

Sung-Rae Kim, Hyong-Jin Park, Myong-Soo Kim, Hong-Soo Park1, and Seong-Kil Kim*

Department of Chemical Engineering, Myongji University, Yongin 449-728, Korea
*Sam-Hwa Paints Ind. Co., Ltd., Ansan 425-110, Korea

e-mail : hongsuo@mj.ac.kr
(Received June 8, 2002; accepted August 16, 2002)

ABSTRACT: Weather-resistant coatings were prepared by mixing a synthesized mill-base and let-down silicone/acrylic resin in weight ratios of 4 : 6, 3 : 7, and 2 : 8. The weatherability of the prepared coatings was tested. The thermal stability, general physical properties, and weatherability of the films of the coatings were improved with silicone content. Among the three mixing ratios mentioned, the ratio of 2 : 8 was the most suitable for the preparation of weather-resistant coatings. The coatings containing 30 wt% of silicone proved to be a high weather-resistant coating.

Keywords: weather-resistant coatings, silicone/acrylic resin, weatherability, mixing ratio.
로 도약성도를 쉽게 조절할 수 있어 다양한 소재에 적용이 가능한 도료로서 가열분상형과 같은 습기환경장 형이 있는데, 장상 습기환경장은 작업성이 훨씬고 특히 내포성이 우수하다고 알려져 금후 최근의 높은 내포성 도료로서 각광을 받은 예응이다.

실리콘/아크릴수지의 주성분으로 하는 고네주성 도료개발에 관한 연구사례를 살펴보면, Kanegafuchi Kagaku Kogyo사에서 시험를 함유하는 고분자, 실
란화합물 및 경화촉매의 3 조성으로 이루어진 특허
외 1 비닐공중합체, 하드록시기 함유 고분자, 실리콘 함유화합물 및 경화촉매의 4 조성으로 이루어진 특
히미 있는데, 이 2가지 형의 고네주성 도료는 경화
촉매를 사용하는 것이 특징적이다. DuPont사에서는
6 하드록시기 함유 아크릴수지와 일자식기 함유 실리콘
의 조성으로 이루어진 고네주성 도료를 개발해서, 습기경화장이 아닌 2 성분계의 일반적인 반응형 타입
임을 밝혀왔다. 또한 저자들은 검색자
3 3 종류의 아크릴 단량체와 실리콘 특유의 내포성을 기대하여 3-
methacryloyloxypropyltrimethoxysilane를 각각 선택
하고 이등분 반응시켜 실리콘/아크릴수지를 함성
하였다. 동 합성품은 안녕분산용 (mill-base)과 형성
(let-down) 실리콘/아크릴수지를 각각 분리하여 얻었고, 이들의 배합비를 중량비율 3:7로 분량화하
여 백색도료로 제조하였으며, 제조된 도막시벤으로 각
종 도막기술 시험과 내포성 시험을 실시하여 고네주성
도료로서의 적합성 여부를 알아보았다.

본 연구에서는 전보자의 7 함성형 안녕분산용과 형
성용 실리콘/아크릴수지의 배합비를 좀 더 확대해서 중량비율 4:6, 3:7 그리고 2:8의 3 종류로 구성하고 이들의 도막시험을 제작한 다음, 제반의 도막신장 시
험 및 내포성을 시험하여 각종 측정자료들을 비교
검토함으로써 고네주성 도료의 안료분산용과 형성용
수지의 적합 배합비 및 고네주성을 규명하였다.

실 실험

약 용. 전보에서 함성한 안료분산용 (KMB-20)과
 형성용 (KLD)의 실리콘/아크릴수지 4 종류를 그대로
사용하였다 (Table 1). 백색반응용 DuPont사 TiO2
 (R-706), 유효성개발제는 Dow Chemical사 silicone
glycol 공중합체 (Dow Corning-11). UV흡수제는 Ciba-Geigy사 benzo triazole 유도체 (Tinuvin-384)
UV안정제는 Ciba-Geigy사 HALS (Tinuvin-292)
을 각각 사용하였다.

내포성 도료의 제조. 전보에서 함성한 KMB-20과
KLD의 실리콘/아크릴수지 제조시의 중합조건, 단
량제 조성비 및 형성조성을 일반혼합법을 일반
임을 밝혀왔다. 또한 저자들은 검색자
3 3 종류의 아크릴 단량체와 실리콘 특유의 내포성을 기대하여 3-
methacryloyloxypropyltrimethoxysilane를 각각 선택
하고 이등분 반응시켜 실리콘/아크릴수지를 함성
하였다. 동 합성품은 안녕분산용 (mill-base)과 형성
(let-down) 실리콘/아크릴수지를 각각 분리하여 얻었고, 이들의 배합비를 중량비율 3:7로 분량화하
여 백색도료로 제조하였으며, 제조된 도막시벤으로 각
종 도막기술 시험과 내포성 시험을 실시하여 고네주성
도료로서의 적합성 여부를 알아보았다.

본 연구에서는 전보자의 7 함성형 안녕분산용과 형
성용 실리콘/아크릴수지의 배합비를 좀 더 확대해서 중량비율 4:6, 3:7 그리고 2:8의 3 종류로 구성하고 이들의 도막시험을 제작한 다음, 제반의 도막신장 시
험 및 내포성을 시험하여 각종 측정자료들을 비교
검토함으로써 고네주성 도료의 안료분산용과 형성용
수지의 적합 배합비 및 고네주성을 규명하였다.

Table 1. Polymerization Conditions and Physical Properties for Silicone/Acrylic Resins

<table>
<thead>
<tr>
<th>Exp. No.</th>
<th>BA g (mol)</th>
<th>MMA g (mol)</th>
<th>BMA g (mol)</th>
<th>MPTS g (mol)</th>
<th>T_m (°C)</th>
<th>viscosity (Stoke)</th>
<th>Si content (%)</th>
<th>conversion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KMB-20</td>
<td>73.8 (0.58)</td>
<td>110.8 (1.11)</td>
<td>157.4 (1.11)</td>
<td>18.0 (0.07)</td>
<td>20.18</td>
<td>10.5</td>
<td>0.52</td>
<td>0.51</td>
</tr>
<tr>
<td>KLD-21</td>
<td>68.0 (0.53)</td>
<td>102.5 (1.03)</td>
<td>154.5 (1.02)</td>
<td>14.3 (0.18)</td>
<td>20.17</td>
<td>5.8</td>
<td>1.25</td>
<td>1.23</td>
</tr>
<tr>
<td>KLD-22</td>
<td>57.1 (0.45)</td>
<td>85.8 (0.86)</td>
<td>121.9 (0.86)</td>
<td>95.2 (0.38)</td>
<td>20.12</td>
<td>4.0</td>
<td>2.72</td>
<td>2.70</td>
</tr>
<tr>
<td>KLD-23</td>
<td>46.0 (0.36)</td>
<td>69.2 (0.65)</td>
<td>98.2 (0.69)</td>
<td>146.6 (0.59)</td>
<td>20.11</td>
<td>4.20</td>
<td>4.18</td>
<td>38.0</td>
</tr>
</tbody>
</table>

*BA: α-Butyl acrylate. *MMA: Methyl methacrylate. *BMA: α-Butyl methacrylate. *MPTS : 3-Methacryloyloxypropyl-
trimethoxysilane.
<table>
<thead>
<tr>
<th>Table 2. Preparation of White Enamel for Architectural Coatings</th>
</tr>
</thead>
<tbody>
<tr>
<td>types</td>
</tr>
<tr>
<td>mill-base</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ket-down</td>
</tr>
<tr>
<td>flowing agent</td>
</tr>
<tr>
<td>ket-down</td>
</tr>
<tr>
<td>UV stabilizer</td>
</tr>
<tr>
<td>xylene</td>
</tr>
<tr>
<td>mill-base</td>
</tr>
</tbody>
</table>

고령층 측정 및 염증의 분석. 고령층은 KS M 5000-2113의 도료의 측정 및 분석 방법 및 에너지 방법의 실험 방법에 따라 혈당수지 가성 1 g을 105 ± 2 ℃의 황온건조기로 3시간 방치하여 증량비율가 흡수하여 받침용 실험을 증합한 건조시간 후 시료의 증량을 측정하였다. 염증 측정은 일본 Shimadzu TGA-50H를 사용하여 공기중에서 측정하였다.

물성시험. 각종 물성시험을 위한 도료시험으로 나ȧ한 염전장성(KS D 3512), 주석판(KS D 3516), 유리판(KS M 5000-1121) 및 알루미늄판(KS D 6701)을 제조하였다.

물성시험에 있어서 편성도는 Krebs-Stommer viscometer (Pacific Scientific사, Serial No. 80328)로 사용하여 KS M 5000-2122의 도료의 주도 (consistency)시험 방법, 비중은 KS M 5000-2131의 도료 비중시험 방법, 연료는 연료도 측정기(Braive Instruments사, 2020형)를 사용하여 KS M 5000-2141의 도료, 연료도시험 방법, 연료도시간은 저전도조건(set-to-touch), 고화시간(dry-hard) 및 경화조건(through)의 3종류를 사용하여 KS M 5000-2512의 도료 건조시간시험 방법, 경도는 연료도시험기(Yasuda Seiki Seisakusho사, Serial No. 4684)를 사용하여 JIS K-5400 (8. 4. 1)의 연료도시험 방법, 측정소는 공방대(Mandrel : Pacific Scientific사, Conical형)를 사용하여 KS M 5000-3331의 도료 연료도시험방법, 건조시간도는 DuPont Impact Tester (Ureshima Seisakusho사, 552형)를 사용하여 JIS K 5400 (8. 3. 2)의 도료 건조시간시험 방법, 60° 경량도는 Glossmeter (Pacific Scientific사, Glossgard II형)를 사용하여 KS M 5000-3312의 도료 60° 경량도시험 방법, 점착력은 ISO 2409의 도료 점착력시험 방법, 내마모성은 Abrasion Tester (Toyoe Seiki Seisakusho사, Taber형)를 사용하여 FE 141C-6192의 도료 내마모시험 방법, 온폐는 KS M 5000-3111의 도료 온폐 및 온폐력시험 방법, 환산저용량은 Spectro Color Meter (Nippon Denbusho Kogyo 사, SZ-Ω50)를 사용하여 KS M 5000-3111의 도료 45°의 환산저용량시험 방법에 의하여 각각 측정하였다. 또한 염수분무표시시험(ASMT B-117) 및 염강장성시험(KS M 5000-2031)도 행하였다.

내후성 시험. 내후성 시험 중 온수시험은 KS M 5000-3241의 시험방법으로 하였고, 촉진내후성시험은 QUV accelerated weathering tester (QUV : Q-Panel사)의 시험방법을 사용하여 KS M 5000-3231의 도료 촉진내후성시험방법으로 시행하여 500, 1000, 2000, 3000, 4000시간에 별도 관찰표준, 화염도차, 반사도 및 명도지수를 측정 분석하였다.

결과 및 고찰

실리콘/아크릴수지의 열안정성, 아크릴 혹은 실리콘 수지의 연료작용에 관한 연구에서, Cascavil 등은 4 변성아크릴수지의 200-600 ℃ 범위에서의 TGA 분석을 통하여 대단계의 열중량 곡선을 분석하고 130-370 ℃에서 대부분의 열중량이 발생을 관찰하였다. Finzel 등 5 내후성 촉진시험인 WOM (sunshine weather-Ometer) (4300시간)의 촉진시험을 통한 열장소를 측정하였는데, 실리콘은 미합한 안키드수지 도료로서 중량감소가 54% 이었으나 실리콘은 30% 변상한 실리콘/아크릴수지 도료는 20.3%
로 나타남을 밝혔다.

Figure 1~3은 KMB-20과 KLD-2가 2분만을 희하여 증발해합을 4 : 6, 3 : 7, 2 : 8로 하여 TGA를 측정한 것인데, 70 200 C의 동안의 조건에서 실리콘성분인 MPTS의 함량변화에 따른 실리콘/아크릴수지의 두께감량을 비교한 것이다. Figure 1~3에서 일부 해온도 300 C를 기준점으로 정할 때, 실리콘/아크릴 수지의 배합비 4 : 6 경우인 B-1046, B-2046, B-3046의 전장양유량이 87.4, 88.2, 89.1로, 배합비 3 : 7 경우인 B-1037, B-2037, B-3037의 전장량이 87.0, 89.5, 90.8로, 배합비 2 : 8 경우인 B-1028, B-2028, B-3028의 전장량이 88.8, 90.0, 91.6로 각각 나타나, 배합비 2 : 8, 3 : 7, 4 : 6의 순으로 고온에서의 열적 안정성이 증가 나타났다.

이는 Table 1에서와 같이 MPTS의 함량증가와 더불어 고온에서의 열적 거동이 좋아짐은 보여주었으며, 앞의 Finkel에서 발전한 실리콘의 함량이 증가할수록 열적 안정성이 향상된다는 보고와 잘 일치를 알 수 있었다.

내추럴 도료의 도막물성, 증발 배합비 변화에 따른 실리кон/아크릴수지의 도막물성 결과를 Table 3에 나타내었다. 도막물성 중에서 중요는 실리콘성분인 MPTS 함량이 많아질수록, 즉 배합비 4 : 6 < 3 : 7 < 2 : 8의 순으로 감소되었으며, 연화도는 배합비 4 : 6과 3 : 7에서는 약하였으나 배합비 2 : 8에서는 나쁘게 나타났다. 이러한 현상은 배합비 2 : 8인 경우 안료본 색상의 함량에 따른 결과로 사료되었다. 또한 표준은 백색인료의 함량에 크게 의존하는지 않다 함량 40 wt%에서 0.936~0.953의 약한 낮은 값을 보여주었다. 도막의 정도는 HB~3H 범위로 건축 도료에 적합한 값을 보였는데, MPTS의 함량이 증가함수록도가 낮아지는 경향을 나타내었다. 완료도는 기준값 90이상 보다 조금 미달되었고, 건조시간은 화학적력을 사용하지 않았음에도 불구하고 경화전도가 70분 이내로 속건성 도료임이 입증되었으며, 내장 모양은 환경감소가 0.5~1.72㎎으로 실리콘 함량 변화에 큰 영향을 가지지는 않았다. 결착성은 모두가 양호하게, 내열성은 MPTS 함량이 많음수록 좋게 나타났으며, 내층적강도는 direct면에서는 도막 모두가 좋었으나 reverse면에서는 다소 나쁘게 나타났다. 결착력은 6종류의 다양한 피로도를 대상으로 시험했는
Table 3. Film Properties of Silicone/Acrylic Resin Coatings

<table>
<thead>
<tr>
<th>name of sample type of test</th>
<th>mill-base/let-down = 4/0</th>
<th>mill-base/let-down = 3/7</th>
<th>mill-base/let-down = 2/8</th>
</tr>
</thead>
<tbody>
<tr>
<td>viscosity (KU)</td>
<td>98</td>
<td>95</td>
<td>90</td>
</tr>
<tr>
<td>fineness of grind</td>
<td>7°</td>
<td>7°</td>
<td>8</td>
</tr>
<tr>
<td>contrast ratio</td>
<td>0.944</td>
<td>0.953</td>
<td>0.942</td>
</tr>
<tr>
<td>pencil hardness (7day)</td>
<td>3H</td>
<td>2H</td>
<td>2H</td>
</tr>
<tr>
<td>60° specular gloss</td>
<td>85.7</td>
<td>82.9</td>
<td>85.2</td>
</tr>
<tr>
<td>drying time (min)</td>
<td>set-to-touch</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>dry-hard</td>
<td>54</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>dry-through</td>
<td>70</td>
<td>61</td>
</tr>
<tr>
<td>storage stability (60℃x10days)</td>
<td>good</td>
<td>good</td>
<td>good</td>
</tr>
<tr>
<td>abrasion resistance (mg loss/100cycle)</td>
<td>0.54</td>
<td>0.62</td>
<td>0.70</td>
</tr>
<tr>
<td>flexibility (1/8")</td>
<td>good</td>
<td>good</td>
<td>good</td>
</tr>
<tr>
<td>heat resistance (150℃x1hr)</td>
<td>good</td>
<td>good</td>
<td>good</td>
</tr>
<tr>
<td></td>
<td>gloss retention(%)</td>
<td>90</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>color difference(△E)</td>
<td>0.26</td>
<td>0.50</td>
</tr>
<tr>
<td>impact resistance (500g/30, 50cm)</td>
<td>direct</td>
<td>30 cm</td>
<td>good</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>30 cm</td>
<td>good</td>
</tr>
<tr>
<td></td>
<td>poor</td>
<td>50 cm</td>
<td>good</td>
</tr>
<tr>
<td>cross hatch adhesion (%)</td>
<td>steel plate</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>tin plate</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>aluminum</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>PET</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>brass</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>tile</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

결과, MPTS 항량이 많은 배합비 2:8의 조건에서 그 수치가 조금 저하되는 편이었으나 90 이상의 기준값이에 들어서 있어서 다양성 보강에 적합성을 확인하였다. 따라서 제반 도장물성 시험 조건에 따른 적정 배합비 실행은 4:6:3:7:2:8을 갖 수 있었다.

염수분무. 염수분무 시험은 준비된 시료를 ASTM D 1654-2의 방법(스래핑)에 따라 X자로 흙구를 만들었으며, rusting는 ASTM D 610으로, blistering는 ASTM D 714의 기준에 맞추어 관찰하였다. Rusting의 구분은 11단계로 나누어 0.01로 이하로 녹이 발생했을 경우 10으로 하고 표면에 100% 녹이 발생한 것을 0으로, blistering의 구분은 발생부위의 직경을 4단계로 나누어 관찰하였다. Table 4에 변화상태를 100, 200, 300, 400시간별로 측정하여 표시하였는데, 서로간에 큰 차이는 없었으나 MPTS의 양이 많아질수록 염수분무에 대한 효과가 조금씩 발생되는 결과를 보여주었다.

목외폭. 목외폭은 시험품의 육상에서 폭로 실험 각도를 30로 하여 6, 12, 16, 24개월 동안 폭로시 시면서 시간경과에 따른 장백보존값, 환경변화, 및 폭로지수값에 각각 적용한 것이 다. Table 5에 배합비에 따라 각각의 값을 얻어서, 목외폭 시험기간에 따른 장백보존값에서 MPTS의 함량증가에 따라 장백보존값이 조금씩 증가하였으며, 배합비 2:8:7:3:7:2:8의 순으로 그 값이 상호하게 나타났다. 목외폭로 시험에 따른 환경노화에서는 24개월 폭로로 모든 값들이 0.6이하로 비교적 중대한 변화를 보였다. 특히 MPTS 함량에 큰 변화 큰 주어 MPTS 30 wt% 함유한 KK-3028의 경우 24개월 폭로 후 환경노화가 0.04로 나타나 환경변화, 환경변화는 12개월 이후부터 급격히 증가하여 나타났다. 목외폭 시험에 따른 접착성에서는 전체 도록에서 24개월 폭로 3.9이하로 나타났고, MPTS 함량차이에 큰 변화를 보였다. 즉, MPTS 함량이 10
Table 4. Results of Salt Exposure Test

<table>
<thead>
<tr>
<th>sample</th>
<th>test time(h)</th>
<th>rusting</th>
<th>blistering</th>
<th>rusting</th>
<th>blistering</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>mill-base/let-down = 4/6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KK-1046</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>KK-2046</td>
<td>10</td>
<td>10</td>
<td>9D</td>
<td>8D</td>
<td>10</td>
</tr>
<tr>
<td>KK-3046</td>
<td>10</td>
<td>10</td>
<td>9M</td>
<td>8M</td>
<td>10</td>
</tr>
<tr>
<td>mill-base/let-down = 3/7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KK-1037</td>
<td>10</td>
<td>10</td>
<td>9D</td>
<td>8M</td>
<td>10</td>
</tr>
<tr>
<td>KK-2037</td>
<td>10</td>
<td>10</td>
<td>9MD</td>
<td>8MD</td>
<td>10</td>
</tr>
<tr>
<td>KK-3037</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>9F</td>
<td>10</td>
</tr>
<tr>
<td>mill-base/let-down = 2/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KK-1028</td>
<td>10</td>
<td>10</td>
<td>9F</td>
<td>8M</td>
<td>10</td>
</tr>
<tr>
<td>KK-2028</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>9F</td>
<td>10</td>
</tr>
<tr>
<td>KK-3028</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>9F</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 5. Physical Properties of Silicone/Acrylic Resin Coatings after Outdoor Exposure

<table>
<thead>
<tr>
<th>type of test</th>
<th>mill-base/let-down = 4/6</th>
<th>mill-base/let-down = 3/7</th>
<th>mill-base/let-down = 2/8</th>
</tr>
</thead>
<tbody>
<tr>
<td>gloss retention</td>
<td>KK-1046</td>
<td>KK-2046</td>
<td>KK-3046</td>
</tr>
<tr>
<td>month 6</td>
<td>88</td>
<td>91</td>
<td>94</td>
</tr>
<tr>
<td>month 12</td>
<td>83</td>
<td>87</td>
<td>91</td>
</tr>
<tr>
<td>month 18</td>
<td>77</td>
<td>85</td>
<td>88</td>
</tr>
<tr>
<td>month 24</td>
<td>69</td>
<td>73</td>
<td>82</td>
</tr>
</tbody>
</table>

yellowness index difference (ΔN)

month 6	0.05	0.18	0.02	0.03	0.02	0.01	0.01	0.10	0.01
month 12	0.20	0.20	0.04	0.08	0.04	0.01	0.03	0.11	0.02
month 18	0.36	0.26	0.07	0.42	0.10	0.03	0.30	0.17	0.03
month 24	0.59	0.40	0.10	0.52	0.20	0.08	0.45	0.25	0.04

color difference (ΔE)

month 6	0.7	0.5	0.4	0.9	0.7	0.2	0.4	0.4	0.3
month 12	1.2	1.7	0.7	1.6	1.2	0.7	1.3	1.8	0.6
month 18	2.9	2.4	1.6	2.4	2.2	1.4	2.0	2.3	0.9
month 24	3.9	3.1	2.0	3.7	3.0	1.8	2.8	2.5	1.4

lightness index difference (ΔL)

month 6	0.39	0.24	0.06	0.26	0.17	0.13	0.37	0.25	0.07
month 12	0.58	0.45	0.32	0.44	0.30	0.25	0.65	0.34	0.22
month 18	1.08	0.77	0.51	0.89	0.76	0.46	0.99	0.67	0.31
month 24	1.31	1.19	0.79	1.07	0.98	0.70	1.02	0.80	0.55

wt%인 KK-1046, KK-1037, KK-1028은 24개월 폭포후 녹에 약간 빛 정도인 2.8~3.9 밝은색의 백자를 보였고, MPTS 함량이 30 wt%인 KK-3046, KK-3037, KK-3028은 24개월 폭포후 녹으로 색상이 옮겨져 1.4~2.0의 백자를 나타내며 양호한 관찰을 받았다. 육안폭포 시간에 따른 명도저수차에서는 전체 도료에서 24개월 폭포후 1.31이라 염 정체적으로 어두워지는 경향을 나타내었다. MPTS 함양 30 wt%인 KK-3046, KK-3037, KK-3028은 명도저수차가 0.55~0.79으로 약간 어두워지는 경 랙을 보였는데, 이는 백아화(chalk) 현상이14 거의 발생하지 않음을 의미하는 것이다.
고혈압성 도료용 실리콘/아크릴수지의 배합비에 따른 도막물성

촉진내부성. 촉진내부성 실험은 QUV 시험기로 촉진하여 1000, 2000, 3000 및 4000시간에 걸쳐 촉진하였다. Figure 4는 촉진시험에 관한 시간이 별 각 파색보존값을 측정한 것이다. MPTS 함량증가에 따라 파색보존값이 증가하였다. 변색증가 및 최적용 실리콘/아크릴수지의 배합비 2 : 8 > 3 : 7 > 4 : 6의 순으로 파색보존값이 향상되었다. 이러한 순서는 내부성 도료의 조성중 MPTS 측, 실리콘 성분의 대소에 따른 현상으로 해석되었다. 촉진내부성 시험중 WOM 시험보다 더 엄격한 QUV시험에서 KK-3028, KK-3037, KK-3046은 4000시간 폭착후에도 파색보존 값이 86, 78, 80%로 각각 나타나 이 3종류의 내부성 도료는 고혈압성 도료에 속함을 알 수 있었다. Figure 5는 촉진시험에 따른 폭착도장질감을 측정한 것이다. 폭착도수는 4000시간 폭착 후 전체 도료가 0.4이하로

Table 5의 온화폭착시험보다 좋게 나타났으며. MPTS 함량에 큰 변화는 주어 KK-3028, KK-3037, KK-3046은 1000시간 폭착 후 폭착도수가 0.1이하로 나타나 폭착현상이 거의 발생하지 않았음을 알았다. 또한 폭착황은 2000시간 이후부터 급격히 증가하였다는 양상을 나타내었다. Figure 6은 촉진시험에 따른 시간이 별 색상차를 측정한 것이다. 색상차는 전체 도료에서 4000시간 폭착 후 4.0이하로 나타나 온화폭착시험의보다 조금 낮은 결과를 보여주었다. 4000시간 폭착 MPTS 10 wt로 함유한 KK-1014, KK-1037, KK-1028은 유안으로도 차이를 느낄 정도인 3.0 이상의 색차를 보였고, 기타의 모든 도료들은 눈으로 색상차를 구별하는 2.0 이하의 색차를 나타내었다. 특히 MPTS 함량 30 wt로 함유한 KK-3028과 KK-3037 2종류의 도료는 장시간 폭착후에도 거의 변화가 되지 않는 1.0이하의 색차값을 보여주었다. Figure 7는 촉진시험에 따른 변색도차를 측정한 것이다. 변색도수는 전체 도료에서 4000시간 폭착 후 1.2이하로 나타나 옵스의 부착으로 보아 대체로 여전히는 경향을 나타내었다. 실리콘 성분함량에 맞추어 변색도차는 MPTS 함량 20과 30 wt에인 6종류의 도료들은 변색도수가 0.6 이하로서 백아화 현상이 거의 발생하지 않았음을 알 수 있었다. 이와의 내부성 시험 범주에 속하는 온화폭착 시험과 촉진내부성 시험의 모든 시험내용을 비교 검토한 결과, 실리콘 성분의 MPTS의 함량이 많아질수록 내부성이 향상되는 결과를 보여주었다. 시험에서 거론한 바와 같이 불소수지 도료나 실리콘수지 도료가 내

Figure 4. Effects of exposure time on the gloss retention of silicone/acylon resin coatings in the accelerated weatherability test.

Figure 5. Effects of exposure time on the yellowness index difference of silicone/acylon resin coatings in the accelerated weatherability test.

Figure 6. Effects of exposure time on the color difference of silicone/acylon resin coatings in the accelerated weatherability test.
후성이 향상되는 것은 불소 혹은 실리콘수지 자체의 원자간 결합에너지를 크게 증가시킨 맥락을 일으키는 인자들에 의해 영향을 심하게 잎으로 전달되는 결과로 인한 것으로 보아 이론에 접근할만한 결과를 얻었다.

한편 안료분산 및 최적용 실리콘/아크릴수지의 배합비에 따른 각종 측정요소들 중 집합도 경계 때, 중량 배합비의 2:8에서 비록 물성시험 중 변형도 및 접착특성에서 다소 그 수치가 낮아졌으나, 기타의 모든 도장시험에 내후성 시험에서 일관된 결과를 얻음으로써 4:6, 3:7, 2:8의 3중 배합비 중 적정배합비는 2:8을 얻을 수 있었다.

결 론

전체에서 합성된 안료분산용 및 최적용 실리콘/아크릴수지의 배합비 중 중량비율 4:6, 3:7, 2:8로 다양화하여 내후성 도료를 제조한 후에 영직 안정성, 도막물성 및 내후성 시험을 거친 결과 다음과 같은 결론을 얻었다.

실리콘/아크릴수지의 영직 성과 실리콘 성주된 물성 중 높은 변형도와 접착도 물성을 제도한 모든 물성시험에서 나타낸 2 종류의 배합비가 보다 양호하게 나타났다. 또한 내후성 시출하는 모든 물성시험에서 실리콘 성주된 물성 중 중량비율 2:8에 가장 많은 함량을 가졌으며, 수지배합비는 2:8일때 가장 양호한 결과를 보여주었다. 따라서 본 실험의 내후성 도료제조시의 수지배합비 3중류 중 2:8의 배합비가 적정치임을 알 수 있었다.

김서와 글 : 본 연구는 과학기술부, 한국과학재단
지정 빌딩재료 현장실험기술연구센터(RRC)의 지원에 의한 것으로 이에 감사드립니다.

참 고 문 헌