기계적합금화한 (Al +12.5%Cu)3Zr 초미립 금속간화합물의 CIP 성형 및 소결 거동

Cold Isostatic Pressing and Sintering Behavior of (Al +12.5%Cu)3Zr Nanocrystalline Intermetallic Compound Synthesized by Mechanical Alloying

  • 문환균 (한양대학교 재료공학부) ;
  • 홍경태 (한국과학기술연구원 합금설계연구부) ;
  • 김선진 (한양대학교 재료공학부)
  • 발행 : 2002.08.01


To improve the ductility of mTEX>$(Al +12.5%Cu)<_3$Zr intermetallics, which are the potential high temperature structural materials, the mechanical alloying behavior, the effect of pressure and temperature on the $Ll_2$, phase formation and the behavior of the cold isostatic press and sintering were investigated. However mechanically alloyed A1$_3$Zr alloy have been known to have high mechanical strength even at high temperature, its workability was poor. A method of solution is refined grain size and phase transformation from $DO_{23}$ to $Ll_2$.$ Ll_2$ structure TEX>$(Al+12.5%Cu)<_3$Zr with nanocrystalline microstructure intermetallic powders where were prepared by mechanical alloying of elemental powders. Grain sizes of the as milled powders were less than 10nm (from transmission electron microscopy, TEM). Thermal analyses showed that $Ll_2$ structure was stable up to$ 800^{\circ}C$ for 1hour $(Al+ 12.5%Cu)<_3$Zr. $(Al+12.5%Cu)<_3$Zr has been consolidated by cold isostatic pressing (CIP 138, 207, 276, 414MPa) at room temperature and subsequent heat treatment at high temperatures where $Ll_2$ structure was stable under vacuum atmosphere. The results showed that 94.2% density of Ll$_2$ compacts was obtained for the (Al +12.5%Cu)$_3$Zr by sintering at 80$0^{\circ}C$ for 1hour (under CIPed 207MPa). This compact of the grain size was 40nm.


  1. F.H. Froes, Metal Power Reports, 59, (1989)
  2. L. Lu and M.O. Lai : Mechanical Alloying, Kluwer acadenic publishers, p.84-108, (1998)
  3. C.T. Liu : Intermetallic Compounds, 2. p.17, (1994)
  4. W.E. Frazier and MIJ. Koczak, in Dispersion Strengthened Aluminum alloys, Y.W. Kim and W.M.W. Griffith, ends., p.573, (1988)
  5. R. Brringer : Mater. Sci. Eng. A117, p.33, (1989)
  6. J. Karek et al. ; Nature, 330, p.556 (1987)
  7. Z.G. Li and D.J. Smith ; Appl. phys. lett. 55, p.919, (1989)
  8. A. Raman and K. Schubert, Z. Metallkunde, 56, p.40, (1965)
  9. Richard W. Siegel and Gretchen E. Fouger, 'Grain Size Dependent Mechanical Properties in Nanophase Meterials' Mat. Res. Soc. Symp. Proc., 362, (1995)
  10. M.W. Weiser and L.C. De Jomghe, J.Am.Ceram.Soc., 71, C125-27, (1995)
  11. C.S. Nordahl and G.L. Messing, J.Am.Ceram.Soc. 79 (12), 3149 (1996)
  12. M.F. Ashby, Acta Metall, 22, 275 (1974)
  13. F.B. Swinkels and M.F. Ashby, Acta Metall., 29, 259 (1981)
  14. G.K. Williamson, W.H. Hall, Acta Metall., 3, 473 (1953)
  15. M. Yamaguchi and T. Yamane, Mat. Res. Soc. Symp. Proc., 81, 275, (1987)
  16. K. Hayashi and T. W. Lin, Advances in Podwer Metallurgy and particulate Materials, Vol. 3, J. Capus and R. M German(eds.), Metal Power Industries Federation, Princeton, NJ, p.219 (1990)
  17. S. K. Pabi, B. S. Murty, Mater. Sci.Eng, A214, 146, (1996)
  18. M. Atzmon, Physical review letters, 64(9), 487, (1990)
  19. S.C. Liao, Y.J. Chen, B.H. Kear and W.E. Mayo 10, No. 6, pp.1063 (1998)
  20. H. Palmour, M. Geho, R. L.Russell, and T. M. Hare, Sintering 91, A.C.D. Chaklader and J.A.Lund, Trans Tech, Brookfield, VT, p.37 (1992)
  21. N.A.L. Mansour and J. White, Powder Met., 6, p.108 (1963)
  22. G. Matsumura and W.S. Tuan, Powder Met. Intern., 15, p.188 (1983)
  23. H.S. Choi, Y.K. Yoon, and W.K. Park, Intern.J.Powder Met., 9, p.23 (1973)
  24. C. Greskovichi and K.W. Lay, J. Am. Ceram. Soc., 55(1), p.142 (1972)
  25. R.L. Coble, J.Appl.Phy., 32, p.787 (1961)
  26. W.H. Rhodes, J.Amer.Ceram.Soc., 64, p.19 (1981)