DOI QR코드

DOI QR Code

Study on Photocatalytic Reaction Using Acicular TiO2 Rutile Powder

침상구조의 루틸상 TiO2 초미분체를 이용한 광촉매 반응에 대한 연구

  • 황두선 (세종대학교 나노기술연구소/나노공학과) ;
  • 구숙경 (세종대학교 나노기술연구소/나노공학과) ;
  • 김광수 (조선대학교 재료공학과) ;
  • 민형섭 (세종대학교 나노기술연구소/나노공학과) ;
  • 이은구 (조선대학교 재료공학과) ;
  • 김선재 (세종대학교 나노기술연구소/나노공학과)
  • Published : 2002.08.01

Abstract

The redox properties of a homogeneously-precipitated $TiO_2$ rutile powder with a BET surface area of ~$200 m^2$/g, consisting of an acicular primary particle, were characterized using photocatalytic reaction in aqueous 4-chlorophenol, Cu-EDTA and Pb-EDTA solutions under ultraviolet irradiation, compared to those of commercial P-25 X$200 m_2$ powder with a spherical primary particle as well as home-made anatase $TiO_2$ powder with ~$200 m^2$/g BET surface area. Here, the anatase powder also includes mainly the primary particles very similar to the acicular shapes of the rutile $TiO_2$ powder. The rutile powder showed the fastest decomposition rate and the largest amount in the photoredor, compared with the anatase or P-25 powder, while the anatase powder unexpectedly showed the slowest rate and the smallest amount in the same experiments regardless of almost the same surface area. From results, the excellent photoredox abilities of this rutile powder appears to be due to specific powder preparation method, like a homogeneous precipitation leading to direct crystallization from the solution, regardless of their crystalline structures even when having the similar particle shape and surface area.

References

  1. Dingwang Chen, A jay K. Ray, Appl. Catal. B, 23, 143 (1999) https://doi.org/10.1016/S0926-3373(99)00068-5
  2. Andrew Mills, Phillip Sawunyma, J. Photochem. Photobiol. A, 84, 305 (1994) https://doi.org/10.1016/1010-6030(94)03877-5
  3. Istvan Ilisz, Zsuzsanna Laszlo, Andras Dombi, Appl. Catal. A, 180, 25 (1999) https://doi.org/10.1016/S0926-860X(98)00355-X
  4. Xiaojing Li, Jerry, W. Cubbage, William S. Jenks, J. Org. Chem., 64, 8509 (1999) https://doi.org/10.1021/jo990820y
  5. Xiaojing Li, Jerry W. Cubbage, William S. Jenks, J.Org.Chem., 64, 8525 (1999) https://doi.org/10.1021/jo990912n
  6. G.A. Somorjai, Chemistry in two dimensions: Surface (Cornel University Press, Ithaca, U.S.A., 1981). p551
  7. S.J. Kim, S.D. Park, C.K. Rhee, W.W. Kim and S. Park, Scri. Mat., 44, 1299 (2001) https://doi.org/10.1016/S1359-6462(01)00854-5
  8. S.J. Kim, S.D. Park, C.J. Jeon, Y.H. Cho, C.K. Rhee, W.W. Kim and E.G. Lee, J. Sol-Gel Sci. and Tech., 22(1/2), 63 (2001) https://doi.org/10.1023/A:1011264320138
  9. S.J. Kim, S.D. Park, Y.H. Jeong and S. Park, J. Am. Ceram. Soc., 82(4), 927 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb01855.x
  10. S.J. Kim, S.D. Park, K.H. Kim, Y.H. Jeong and I.H. Kuk, United States Patent No.6001326 (1999)
  11. S.D. Park, Y.H. Cho, W.W. Kim and S.J. Kim, J. Solid State Chem., 146, 230 (1999) https://doi.org/10.1006/jssc.1999.8342
  12. D.-S. Seo, J.-K. Lee and H. Kim, J. Kor. Ceram. Soc., 37(7), 700 (2000)
  13. T. Sugimoto, K. Sakata and A. Muramatsu, J. Colloids & Interface Sci., 159, 372 (1993) https://doi.org/10.1006/jcis.1993.1336
  14. M. Gapal, W.J. Moberly Chan and L.C. De Jonghe, J. Mater.Sci., 32, 6001 (1997) https://doi.org/10.1023/A:1018671212890
  15. J.A. Ayres, Decontamination of Nuclear Reactors and Equipment, (Ronald Press : New York, 1970), p.6
  16. L. Loy and E.E. Wolf, Solar Energy, 34(6), 455 (1985) https://doi.org/10.1016/0038-092X(85)90019-2
  17. M.Z. Hoffmann, D.R. Prasad, G. Jones II and V. Malba, J.Am.Chem.Soc., 105, 6360 (1983) https://doi.org/10.1021/ja00358a055