Hewitt Realcompactification and Basically Disconnected Cover*

Abstract

We show that if the Stone–Čech compactification of ΛX and the minimal basically disconnected cover of βX are homeomorphic and every real $\sigma Z(X)^*$-ultrafilter on X has the countable intersection property, then there is a covering map from $\nu(\Lambda X)$ to νX and every real $\sigma Z(X)^*$-ultrafilter on X has the countable intersection property if and only if there is a homeomorphism from the Hewitt realcompactification of ΛX to the minimal basically disconnected space of νX.

0. Introduction

All spaces in this paper are assume to be Tychonoff and for a space X, let $(\beta X, \beta_X)((\nu X, \nu_X))$, resp.) denotes the Stone–Čech compactification (Hewitt realcompactification, resp.) of X. For any regular space X, there is the absolute (EX, k_X) of X and if X is Tychonoff, then there is a homeomorphism $k : \beta(EX) \to E(\beta X)$. Moreover, for any space X, the following are equivalent:

(i) there is a homeomorphism $\nu(\beta X) \to E(\beta X)$,

(ii) if $\{A_n : n \in N\}$ is a decreasing sequence in $R(X)$ and $\cap \{A_n : n \in N\} = \phi$, then $\cap\{\cl{\omega X}(A_n) : n \in N\} = \phi$,

(iii) if $\{A_n : n \in N\}$ is a decreasing sequence in $R(X)$, then $\cl{\omega X}(\cap \{A_n : n \in N\}) = \cap\{\cl{\omega X}(A_n) : n \in N\}$, and

* The present research was conducted by the research fund of Dankook University in 2001.
(iv) every stable $R(X)$-ultrafilter has the countable intersection property [4].

For any Tychonoff space X, there is a minimal basically disconnected cover $(\Lambda X, A_X)$ [5] and if X is locally weakly Lindelöf, then ΛX are given by a filter space [2] and [4].

In this paper, we show that if the Stone–Čech compactification of ΛX and the minimal basically disconnected cover of βX are homeomorphic, then ΛX is a filter space and that if every real $\sigma Z(X)^u$-ultrafilter on X has the countable intersection property, then there is a covering map from $\nu(\Lambda X)$ to νX. Using this, we will show that if the Stone–Čech compactification of ΛX and the minimal basically disconnected cover of βX are homeomorphic, then every real $\sigma Z(X)^u$-ultrafilter on X has the countable intersection property and that if there is a homeomorphism from the Hewitt realcompactification of ΛX to the minimal basically disconnected space of νX. For the terminology, we refer to [1] and [4].

1. Fixed $\sigma Z(X)^u$-ultrafilter space

Recall that a subspace Y of a space X is said to be C^*-embedded in X if for any bounded real-valued continuous map $f : Y \to R$, there is a bounded real-valued continuous map $g : X \to R$ with $g|_Y = f$ and that a space X is called basically disconnected if every cozero-set in X is C^*-embedded in X.

Definition 1.1. Let X be a space. Then a pair (Y, f) is called

1. a cover of X if $f : Y \to X$ is a covering map,

2. a basically disconnected cover of X if (Y, f) is a cover of X and Y is a basically disconnected space and,

3. a minimal basically disconnected cover of X if (Y, f) is a cover of X and it is a basically disconnected cover of X and for any basically disconnected cover (Z, g) of X, there is a covering map $h : Z \to Y$ with $f \circ h = g$.

For any space X, the collection $R(X)$ of all regular closed sets in X, when partially ordered by inclusion, becomes a complete Boolean algebra, in which the join, meet, and complementation operations are defined as follows:
If \(A \subseteq R(X) \) and \(\{ A_i : i \in I \} \subseteq R(X) \), then
\[
\bigvee \{ A_i : i \in I \} = \text{cl}_X \left(\bigcup \{ A_i : i \in I \} \right),
\]
\[
\bigwedge \{ A_i : i \in I \} = \text{cl}_X \left(\text{int}_X (\bigcap \{ A_i : i \in I \}) \right),
\]
and
\[
\Lambda = \text{cl}_X (X - A)
\]
and a sublattice of \(R(X) \) is a subset of \(R(X) \) that contains \(\phi \), \(X \) and is closed under finite joins and meets [4].

A lattice \(L \) is called \(\sigma \)-complete if every countable subset of \(L \) has join and meet. For a subset \(M \) of a complete Boolean algebra \(L \), \(\sigma M \) denotes the smallest \(\sigma \)-complete Boolean subalgebra of \(L \) containing \(M \). For any space \(X \), \(Z(X) \) denotes the set of all zero-sets and let \(Z(X)^* = \{ \text{cl}_X (\text{int}_X (A)) : A \subseteq Z(X) \} \). For a space \(X \) and a zero-set \(Z \) in \(X \), there is a zero-set \(A \) in \(\beta X \) with \(A \cap X = Z \). It is well-known that for any covering map \(f : Y \to X \), the map \(\phi : R(Y) \to R(X) \), defined by \(\phi(A) = f(A) \), is a Boolean isomorphism and that for any extension \(Y \) of a space \(X \), the map \(\phi : R(Y) \to R(X) \), defined by \(\phi(A) = A \cap X \), is a Boolean isomorphism. Hence, for any space \(X \), the isomorphism \(\phi : R(\beta X) \to R(X) \) induces Boolean isomorphisms \(\sigma Z(\beta X)^* \to \sigma Z(X)^* \) and \(\sigma Z(\nu X)^* \to \sigma Z(X)^* \).

For any space \(X \), \((\Lambda X, \Lambda_X) \) \(((\Lambda(\beta X), \Lambda_\beta), \text{resp.}) \) denotes the minimal basically disconnected cover of \(X(\beta X, \text{resp.}) \). Vermeer showed that for a compact space \(X \), \(\Lambda X \) is given by the Stone-space \(S(\sigma Z(X)^*) \) of \(\sigma Z(X)^* \) and \(\Lambda_X(a) = \cap a \) [5].

Recall that a space \(X \) is called weakly Lindelöf if every open cover of \(X \) has a countable subfamily that is dense in \(X \) and that a space \(X \) is called locally weakly Lindelöf if every element of \(X \) has a weakly Lindelöf neighborhood. In [2] and [4], it is shown that for any locally weakly Lindelöf space \(X \), \(\Lambda X \) is given by the filter space \(\{ a : a \) is a fixed \(\sigma Z(X)^* \)-ultrafilter \(\} \) and \(\Lambda_X(a) = \cap a \).

For a space \(X \), there is the Stone extension \(\Lambda^\beta : \beta(\Lambda X) \to \beta X \) of \(\beta_X \). Since \(\beta(\Lambda X) \) and \(\beta X \) are compact, \(\Lambda^\beta \) is a covering map and since \(\beta(\Lambda X) \) is basically disconnected [5], there is a covering map \(h_X : \beta(\Lambda X) \to \Lambda(\beta X) \).

Since \(\Lambda^\beta = \Lambda_\beta \cdot h_X \). If \(h_X \) is a homeomorphism, then we write \(\beta(\Lambda X) = \Lambda(\beta X) \) and in case, we will identify \((\beta(\Lambda X), \Lambda^\beta) \) and \((\Lambda(\beta X), \Lambda_\beta) \). In [2], it is shown that if \(X \) is a weakly Lindelöf space, then \(\beta(\Lambda X) = \Lambda(\beta X) \).
Proposition 1.2. Suppose that X is a space and $\beta(\Lambda X) = \Lambda(\beta X)$. Then ΛX is given by the filter space \(\{ a : a \text{ is a fixed } \sigma\mathcal{Z}(X)^* - \text{ulfilter} \} \).

Proof. Since the diagram
\[
\begin{array}{ccc}
\Lambda_{\beta}^{-1}(X) & \xrightarrow{\Lambda_{\beta_x}} & X \\
\downarrow j & & \downarrow \beta_X \\
\beta(\Lambda X) & \xrightarrow{\Lambda_{\beta}} & \beta X
\end{array}
\]
is a pullback in the category Top, there is a continuous map $h_X : \Lambda X \to \Lambda_{\beta}^{-1}(X)$ such that $\Lambda_{\beta X} \circ h_X = \Lambda_X$ and $j \circ h_X = h_X \circ \beta_{AX}$. where j is the inclusion map and $\Lambda_{\beta X}$ is the restriction and corestriction of Λ_{β} with respect to $\Lambda_{\beta}^{-1}(X)$ and X, respectively. Take any $x \in \Lambda_{\beta}^{-1}(X)$. Then there is $y \in \beta(\Lambda X)$ with $h_X(y) = x$ and $\Lambda_{\beta}(x) = \Lambda_{\beta X}(x) \in X$. Since Λ_X is a covering maps, $y \in \Lambda X$. Hence h_X is onto. Since $\Lambda_{\beta X} \circ h_X = \Lambda_X$ and Λ_X is perfect, h_X is a perfect map [4]. Since h_X is $1 - 1$, h_X is a homeomorphism. Hence $(\Lambda_{\beta}^{-1}(X), \Lambda_{\beta X})$ is the minimal basically disconnected cover of X. Thus $\Lambda_{\beta}^{-1}(X)$ is the fixed $\sigma\mathcal{Z}(X)^* - \text{ulfilter}$ \(\{ a : a \text{ is } a \text{ fixed } \sigma\mathcal{Z}(X)^* - \text{ulfilter} \} \).

Proposition 1.3. Let X be a space. Suppose that ΛX is given by the fixed $\sigma\mathcal{Z}(X)^*$ -ulfilter space. Then for any decreasing sequence $(A_n)_n$ in $\sigma\mathcal{Z}(X)^*$,
\[\Lambda_X(\cap \{ A_n : n \in \mathbb{N} \}) = \cap(\Lambda_n : n \in \mathbb{N}), \text{ where } A_n^* = \{ a : a \text{ is a fixed } \sigma\mathcal{Z}(X)^* - \text{ulfilter and } A_n \subseteq a \} \).

Proof. Take any $A \in \sigma\mathcal{Z}(X)^*$ and $a \in A^*_n$. Then $\Lambda_X(A^*) \subseteq A$.

Take any $x \in A$. Let $A_x = \{ B \in \sigma\mathcal{Z}(X)^* : x \in \text{int}_X(B) \}$. Then $A_x \cup \{ A \}$ has the finite meet property and hence there is a $\sigma\mathcal{Z}(X)^*$-ulfilter a containing $A_x \cup \{ A \}$.

- 164 -
Since \(a_\ast \) is a local base at \(x \) in \(X \), \(\Lambda_X(a) = \bigcap a = x \) and so \(A \subseteq \Lambda_X(A) \). Thus \(\Lambda_X(\bigcap \{ A_n^* : n \in N \}) \subseteq \bigcap \{ A_n : n \in N \} \). Take any \(y \in \bigcap \{ A_n : n \in N \} \), then \(a_y \cup \{ A_n : n \in N \} \) has the finite meet property and hence it is contained in a \(\alpha Z(X)^* \)-ultrafilter \(\eta \) and so \(\eta \in \bigcap \{ A_n^* : n \in N \} \) and \(\Lambda_X(\eta) = y \).

2. Hewitt realcompactification and minimal basically disconnected cover

In the following, we may assume that every space has the property \(\Lambda(\beta X) = \beta(\Lambda X) \).

For any space \(X \), let \(\nu : \Lambda X \to \nu(\Lambda X) \) be the Hewitt realcompactification of \(\Lambda X \) and \((\Lambda(\nu X), \Lambda_\rho)\) the minimal basically disconnected cover of \(\nu X \). Since \(\nu X \) is realcompact, there is a continuous map \(r_X : \nu(\Lambda X) \to \nu X \) such that \(\nu_X \cdot A = r_X \cdot \nu \Lambda \) \([4] \). If there is a homeomorphism \(k : \nu(\Lambda X) \to \Lambda(\nu X) \) such that \(\Lambda_\rho \cdot k = r_X \), then we write \(\Lambda(\nu X) = \nu(\Lambda X) \) and in case, we will identify \((\nu(\Lambda X), r_X)\) and \((\Lambda(\nu X), \Lambda_\rho)\). Recall that a covering map \(f : Y \to X \) is called \(\alpha Z^* - \text{irreducible} \) if \(\{ f(A) : A \in \alpha Z(Y)^* \} = \alpha Z(X)^* \) and that a subspace \(D \) of a space \(X \) is \(\alpha Z^* - \text{embedded} \) if for any \(B \in \alpha Z(D)^* \), there is \(S \subseteq \alpha Z(X)^* \) such that \(S \cap D = B \). For any compact space \(X \), \(\Lambda X \) is \(\alpha Z^* - \text{irreducible} \) \([3]\) and every dense \(C^* - \text{embedded} \) subspace of a space is \(\alpha Z^* - \text{embedded} \).

We will give some characterizations of a space \(X \) for which \(\Lambda(\nu X) = \nu(\Lambda X) \).

Definition 2.1. Let \(X \) be a space. A \(\alpha Z(X)^* \)-ultrafilter \(\alpha \) is called **real** if \(\bigcap \{ \text{cl}_{\beta X}(A) : A \in \alpha \} \subseteq \nu X \).

Theorem 2.2. Let \(X \) be a space. Then we have the following:

(a) Suppose that every \(\alpha Z(X)^* \)-ultrafilter has the countable intersection property and \(\Lambda(\beta X) = \beta(\Lambda X) \). Then \(r_X \) is a covering map.

(b) The following are equivalent:

1. \(\Lambda(\nu X) = \nu(\Lambda X) \),
2. if \(\{ A_n : n \in N \} \) is a decreasing sequence in \(\alpha Z(X)^* \) with \(\bigcap \{ A_n : n \in N \} = \phi \),
then \(\cap \{ \text{cl}_{X}(A_n) : n \in N \} = \phi \),

(3) if \(\{ A_n : n \in N \} \) is a decreasing sequence in \(\sigma Z(X)^* \), then
\[
\text{cl}_{X}(\cap \{ A_n : n \in N \}) = \cap \{ \text{cl}_{X}(A_n) : n \in N \},
\]
and

(4) every real \(\sigma Z(X)^* \)-ultrafilter has the countable intersection property.

Proof. (a) Let \(j_1 : v(AX) \to \beta(AX) \) and \(j_2 : vX \to \beta X \) be inclusion maps.

The following diagram commutes.

\[
\begin{array}{ccc}
v(AX) & \xrightarrow{r_X} & vX \\
\downarrow{j_1} & & \downarrow{j_2} \\
\beta(AX) & \xrightarrow{\Lambda_{X} \ast h_{X}} & \beta X
\end{array}
\]

Since \(j_2 \circ r_X \circ v_A = j_2 \circ v_X \circ \Lambda_X = \Lambda_X \ast h_{X} \ast j_1 \circ v_A \) and \(v_A \) is dense, \(j_2 \circ m_X = \Lambda_X \ast h_X \ast j_1 \). Let \(\rho \in vX \) and \(a \in \Lambda^{-1}_{X}(\rho) \). Suppose that \(a \notin v(AX) \).

Then there is a sequence \(\{ Z_n : n \in N \} \in \sigma Z(\beta(AX))^* \) such that for any \(n \in N \), \(a \in \text{int}_{\beta(AX)}(Z_n) \) and \((\cap \{ Z_n : n \in N \}) \cap \Lambda X = \phi \) [4].

Since \(\Lambda_X \) is \(\sigma Z^* \)-irreducible, \(\Lambda_X(Z_n) \in \sigma Z(\beta X)^* \). Hence \(\alpha_X = \{ U \cap X : U \in \alpha \} \) is a \(\sigma Z(X)^* \)-ultrafilter.

Let \(n \in N \). Since \(a \in \text{int}_{\beta(AX)}(Z_n) \) and \(\{ A^* : A \in \sigma Z(\beta X)^* \} \) is a base for \(\beta(AX) \), there is \(A \in \sigma Z(\beta X)^* \) with \(a \in A^* \subseteq Z_n \) and hence \(\Lambda_X(a) \in \Lambda_X(A^*) = \Lambda_X \Lambda_X(Z_n) \). So \(\Lambda_X(Z_n) \subseteq a \).

Hence for any \(n \in N \), \(\Lambda_X(Z_n) \cap X = \alpha_X \).

Since \(\rho \in vX \), \(\alpha_X \) is real and so \(\cap \{ (\Lambda_X(Z_n) \cap X : n \in N) \neq \phi \} \).

Pick \(x \in \cap \{ (\Lambda_X(Z_n) \cap X : n \in N) \} \).

Let \(n \in N \). Then \(\Lambda^{-1}_X(x) \cap Z_n \neq \phi \).

Since \(\Lambda^{-1}_X(x) = \Lambda^{-1}_X(x) \cap Z_n \) is a compact family of closed sets in \(\Lambda^{-1}_X(x) \) with the finite intersection property, \(\cap \{ \Lambda^{-1}_X(x) \cap Z_n : n \in N \} \neq \phi \) and hence \((\cap \{ Z_n : n \in N \}) \cap \Lambda X \neq \phi \).

This is a contradiction.

Hence \(a \in v(AX) \). Thus \(r_X \) is onto. Since \(j_1 \) and \(j_2 \) are dense and \(\beta(AX) \) and \(\beta X \) are compact, \(r_X \) is a covering map [4].
(b) (1)⇒(2) Suppose that there is a sequence \(\{ A_n : n \in \mathbb{N} \} \) in \(\omega \mathcal{Z}(X)^* \) such that \[\bigcap \{ \text{cl}_{\omega X}(A_n) : n \in \mathbb{N} \} \neq \emptyset. \] Since \(\beta(v(\Lambda X)) = \beta(\Lambda X) = \Lambda(\beta X) = \Lambda(\beta(vX)) \), \(\Lambda(\nu X) \) is given by the filter space \(\{ a : a \ is \ fixed \ \omega \mathcal{Z}(\nu X)^* \ - \ \text{ultrafilter} \} \) and \(\text{cl}_{\omega X}(A_n) \in \omega \mathcal{Z}(\nu X)^* \) for all \(n \in \mathbb{N} \), by Proposition 1.3, \(\Lambda \bigcap \{ \text{cl}_{\omega X}(A_n)^* : n \in \mathbb{N} \} \) = \(\bigcap \{ \text{cl}_{\omega X}(A_n) : n \in \mathbb{N} \} \neq \emptyset. \) Note that for any \(n \in \mathbb{N}, \) \(\text{cl}_{\omega X}(A_n)^* = \text{cl}_{\Lambda(\omega X)}(A_n^{-1}(\text{int}_{\omega X}(\text{cl}_{\omega X}(A_n)))) \). Let \(t \in \bigcap \{ \text{cl}_{\Lambda(\omega X)}(A_n^{-1}(\text{int}_{\omega X}(\text{cl}_{\omega X}(A_n)))) : n \in \mathbb{N} \}. \) Then there is the \(\omega \mathcal{Z}(X)^* \)-ultrafilter \(a \) such that \(t \in \bigcap \{ \text{cl}_{\Lambda(\omega X)}(A) \ : \ A \in a \} \) [4]. Since \(t \in \nu(\Lambda X) \), the \(\omega \mathcal{Z}(X)^* \)-ultrafilter \(a \) has the countable intersection property. Let \(n \in \mathbb{N}. \) Then there is \(B_n \in \omega \mathcal{Z}(\nu X)^* \) such that \(B_n \cap X = A_n. \) Since \(\Lambda X(\text{cl}_{\Lambda(\omega X)}(A_n^{-1}(\text{int}_{\omega X}(B_n))) \cap \Lambda X) = \Lambda X(\text{cl}_{\Lambda(\omega X)}(A_n^{-1}(\text{int}_{\omega X}(B_n)))) = \text{cl}_{\Lambda(\omega X)}(A_n^{-1}(\text{int}_{\omega X}(\text{cl}_{\omega X}(A_n)))) \cap \Lambda X). \) Thus \(t \in \text{cl}_{\Lambda(\omega X)}(\text{cl}_{\Lambda(\omega X)}(A_n^{-1}(\text{int}_{\omega X}(\text{cl}_{\omega X}(A_n)))))) \). Since \(\text{cl}_{\Lambda(\omega X)}(A_n^{-1}(\text{int}_{\omega X}(B_n))) \subseteq \omega \mathcal{Z}(\nu X)^* \) and \(\Lambda(\nu X) \) is basically disconnected, \(\text{cl}_{\Lambda(\omega X)}(A_n^{-1}(\text{int}_{\omega X}(B_n))) \subseteq \text{cl}_{\Lambda(\omega X)}(A_n^{-1}(\text{int}_{\omega X}(\text{cl}_{\omega X}(A_n)))) \). Hence \(\text{cl}_{\Lambda(\omega X)}(A_n^{-1}(\text{int}_{\omega X}(\text{cl}_{\omega X}(A_n)))) \subseteq a \) and so \(\bigcap \{ \text{cl}_{\Lambda(\omega X)}(A_n^{-1}(\text{int}_{\omega X}(\text{cl}_{\omega X}(A_n)))) : n \in \mathbb{N} \} = \bigcap \{ A_n : n \in \mathbb{N} \} \neq \emptyset. \)

(2)⇒(3) Suppose that \(p \not\in \text{cl}_{\omega X}(\bigcap \{ A_n : n \in \mathbb{N} \}). \) Then there is \(B \in \omega \mathcal{Z}(\nu X)^* \) such that \(p \in \text{int}_{\omega X}(B) \) and \(B \cap (\bigcap \{ A_n : n \in \mathbb{N} \}) = \emptyset. \) Since \(\{ C \cap A_n : n \in \mathbb{N} \} \) is a decreasing sequence in \(\omega \mathcal{Z}(X)^* \) with empty intersection, \(\bigcap \{ \text{cl}_{\omega X}(C \cap A_n) : n \in \mathbb{N} \} = \emptyset. \) Suppose that \(p \in \bigcap \{ \text{cl}_{\omega X}(A_n) : n \in \mathbb{N} \}. \) Let \(W \) be a neighborhood of \(p \) in \(\omega X \) and \(n \in \mathbb{N}. \) Then \(\text{int}_{\omega X}(W) \cap \text{int}_{\omega X}(B) \cap A_n \neq \emptyset. \) Since \(C \cap A_n = \text{cl}_{\omega X}(\text{int}_{\omega X}(C \cap A_n)) = \text{cl}_{\omega X}(\text{int}_{\omega X}(C \cap A_n)) = \text{int}_{\omega X}(C \cap A_n) = \text{int}_{\omega X}(B \cap X) \cap A_n \supseteq \text{int}_{\omega X}(B \cap A_n) \cap W = \text{int}_{\omega X}(B) \cap A_n \cap W \neq \emptyset. \) Hence \(p \in \bigcap \{ \text{cl}_{\omega X}(C \cap A_n) : n \in \mathbb{N} \} \) and so \(p \in \bigcap \{ \text{cl}_{\omega X}(A_n) : n \in \mathbb{N} \}. \)

(3)⇒(4) Let \(a \) be a real \(\omega \mathcal{Z}(\nu X)^* \)-ultrafilter and \(\{ B_n : n \in \mathbb{N} \} \subseteq a. \) For any \(n \in \mathbb{N}, \) let \(A_n = \bigwedge \{ B_i : 1 \leq i \leq n \}. \) Then \(\{ A_n : n \in \mathbb{N} \} \) is a decreasing sequence in
Hewitt realcompactification and basically disconnected cover

\(\alpha Z(X)^*\). Since \(a\) is real, there exist a \(p \in \nu X\) such that \(p \in \bigcap \{ \text{cl}_{\omega^*X}(A_n) : n \in N \}\). By the hypothesis, \(p \in \text{cl}_{\omega^*X}(\bigcap \{ A_n : n \in N \})\). Hence \(\bigcap \{ A_n : n \in N \} \neq \emptyset\) and so \(\bigcap \{ B_i : i \in N \} \neq \emptyset\). Thus \(a\) has the countable intersection property.

(4) \(\Rightarrow\) (1) By Proposition 1.2 and (a) in this theorem, \(r_X\) is covering and so there is a covering map \(t : \nu(\Lambda X) \to \Lambda(\nu X)\) with \(r_X = \Lambda_0 \cdot t\). Suppose that \(x \neq y\) in \(\nu(\Lambda X)\). Then there are \(A, B \in \alpha Z(\nu(\Lambda X))^*\) such that \(x \in A, y \in B\) and \(A \cap B = \emptyset\). Since \(\Lambda(\nu X)\) is dense \(C^*\)-embedded in \(\Lambda(\beta X) = \beta(\Lambda X)\), \(\Lambda(\nu X)\) is \(\alpha Z(X)^*\)-embedded and so \(t \cdot \Lambda_0\) is \(\alpha Z^*\)-irreducible [3]. Hence \(t\) is \(\alpha Z^*\)-irreducible.

Since \(A \cap B = \emptyset\) and \(t\) is a covering map, \(\tau(A) \cap \tau(B) = \emptyset\). Since \(t\) is \(\alpha Z^*\)-irreducible, \(\tau(A)\), \(\tau(B) \in \alpha Z(\Lambda(\nu X))^* = B(\Lambda(\nu X))\) and so \(\tau(A) \cap \tau(B) = \emptyset\). Hence \(\tau(x) \neq \tau(y)\) and so \(t\) is 1 \(-\) 1. Thus \(t\) is a homeomorphism.

References