A Hybrid Coordinate Partitioning Method in Mechanical Systems Containing Singular Configurations

  • Published : 2002.09.01


In multibody dynamics, DAE(Differential Algebraic Equations) that combine differential equations of motion and kinematic constraint equations should be solved. To solve these equations, either coordinate partitioning method or constraint stabilization method is commonly used. The most typical coordinate partitioning methods are LU decomposition, QR decomposition, and SVD(singular value decomposition). The objective of this research is to suggest a hybrid coordinate partitioning method in the dynamic analysis of multibody systems containing singular configurations. Two coordinate partitioning methods, i.e. LU decomposition and QR decomposition for constrained multibody systems, are combined for a new hybrid coordinate partitioning method. The proposed hybrid method reduces the simulation time while keeping accuracy of the solution.


  1. Yoo, W. S and Haug, E. J., 1986, ' Dynamics of Articulated Structures: Part I, Theory', J. Structural Mechanics, Vol.14, No.1, pp.105 - 126 https://doi.org/10.1080/03601218608907512
  2. Wahage, R. A. and Haug, E. J., 1982, 'Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems', ASME J. Mech. Des., Vol.104, pp. 247 - 255 https://doi.org/10.1115/1.3256318
  3. Kim,. S. S. and Vanderploeg, M. J., 1986, 'QR Decomposition for State Space Representation of constrained Mechanical Dynamic Systems', ASME J. Mech. Trans. Auto. Des., Vol.108, pp. 183 - 188 https://doi.org/10.1115/1.3260800
  4. Mani, N. K., Haug, E. J., and K. E. Atkinson, 'Application of Singular Value Decomposition for Mechanical System Dynamics ', ASME J. Mech. Trans. Auto. Des., Vol.107, pp. 82 - 87
  5. Liang, C. G. and Lance, G. M., 1987, ' A Differentiable Null Space Method for Constrained Dynamic Analysis", ASME J. Mech. Trans. Auto. Des., Vol.109, pp. 405 - 411 https://doi.org/10.1115/1.3258810
  6. Potra F. A. and Rheinboldt W. C., 1991,  On the Numerical Solution of Euler-Lagrange Equations , MECH. STRUCT. & MACH., 19(1), 1-18 https://doi.org/10.1080/08905459108905135
  7. Potra F. A. and Yen J., 1991,  Implicit Numerical Integration for Euler-Lagrange Equations via Tangent Space Parametrization , MECH. STRUCT. & MACH., 19(1), 77-98 https://doi.org/10.1080/08905459108905138
  8. Petzold, L. R. and Potra F. A., 1992, ODAE methods for the numerical solution of Euler-Lagrange equations , Applied Numerical Mathematics 10, 397-413 https://doi.org/10.1016/0168-9274(92)90059-M
  9. Ascher U. M. and Petzold L. R., 1992,  Projected collocation for higher-order higher-index differential-algbraic equations, J. of Computational and Applied mathematics,43, 243-259 https://doi.org/10.1016/0377-0427(92)90269-4
  10. Potra F. A., 1993, Implementation of Linear Multistep Methods for Solving Constrained Equations of Motion, 30(3), 774-789 https://doi.org/10.1137/0730039
  11. Baumgrate, J., 1972, 'Stabilization of constraints and Integrals of motion in Dynamical Systems', Computer Methods in Applied Mechanics and Engineering, pp.1 - 16 https://doi.org/10.1016/0045-7825(72)90018-7
  12. Chang, C. O. and Nikravesh, P. E., 1985, 'An Adaptive Constraint Violation Stabilization Method for Dynamic Analysis of Mechanical Systems', ASME J. Mech. Trans. Auto. Des., Vol.107, pp. 488 - 492 https://doi.org/10.1115/1.3260750
  13. Shabana, A. A., 1994, ' Computational Dynamics', John Wiley & Son Inc.
  14. Jerkovsky, W., 1978, 'The Structure of Multibody Dynamics Equations', J. Guidance and Control, Vol.1, No.3, pp. 173 - 182 https://doi.org/10.2514/3.55761
  15. Shampine, L. F., and Gordon, M. K., 1975, ' Computer Solution of Ordinary Differential Equations: The Initial Value Problem,' W. J. Freeman, San Francisco, California