A Hybrid Coordinate Partitioning Method in Mechanical Systems Containing Singular Configurations

  • Published : 2002.09.01

Abstract

In multibody dynamics, DAE(Differential Algebraic Equations) that combine differential equations of motion and kinematic constraint equations should be solved. To solve these equations, either coordinate partitioning method or constraint stabilization method is commonly used. The most typical coordinate partitioning methods are LU decomposition, QR decomposition, and SVD(singular value decomposition). The objective of this research is to suggest a hybrid coordinate partitioning method in the dynamic analysis of multibody systems containing singular configurations. Two coordinate partitioning methods, i.e. LU decomposition and QR decomposition for constrained multibody systems, are combined for a new hybrid coordinate partitioning method. The proposed hybrid method reduces the simulation time while keeping accuracy of the solution.

References

  1. Potra F. A. and Yen J., 1991,  Implicit Numerical Integration for Euler-Lagrange Equations via Tangent Space Parametrization , MECH. STRUCT. & MACH., 19(1), 77-98 https://doi.org/10.1080/08905459108905138
  2. Petzold, L. R. and Potra F. A., 1992, ODAE methods for the numerical solution of Euler-Lagrange equations , Applied Numerical Mathematics 10, 397-413 https://doi.org/10.1016/0168-9274(92)90059-M
  3. Chang, C. O. and Nikravesh, P. E., 1985, 'An Adaptive Constraint Violation Stabilization Method for Dynamic Analysis of Mechanical Systems', ASME J. Mech. Trans. Auto. Des., Vol.107, pp. 488 - 492 https://doi.org/10.1115/1.3260750
  4. Shabana, A. A., 1994, ' Computational Dynamics', John Wiley & Son Inc.
  5. Baumgrate, J., 1972, 'Stabilization of constraints and Integrals of motion in Dynamical Systems', Computer Methods in Applied Mechanics and Engineering, pp.1 - 16 https://doi.org/10.1016/0045-7825(72)90018-7
  6. Ascher U. M. and Petzold L. R., 1992,  Projected collocation for higher-order higher-index differential-algbraic equations, J. of Computational and Applied mathematics,43, 243-259 https://doi.org/10.1016/0377-0427(92)90269-4
  7. Mani, N. K., Haug, E. J., and K. E. Atkinson, 'Application of Singular Value Decomposition for Mechanical System Dynamics ', ASME J. Mech. Trans. Auto. Des., Vol.107, pp. 82 - 87
  8. Jerkovsky, W., 1978, 'The Structure of Multibody Dynamics Equations', J. Guidance and Control, Vol.1, No.3, pp. 173 - 182 https://doi.org/10.2514/3.55761
  9. Liang, C. G. and Lance, G. M., 1987, ' A Differentiable Null Space Method for Constrained Dynamic Analysis", ASME J. Mech. Trans. Auto. Des., Vol.109, pp. 405 - 411 https://doi.org/10.1115/1.3258810
  10. Yoo, W. S and Haug, E. J., 1986, ' Dynamics of Articulated Structures: Part I, Theory', J. Structural Mechanics, Vol.14, No.1, pp.105 - 126 https://doi.org/10.1080/03601218608907512
  11. Wahage, R. A. and Haug, E. J., 1982, 'Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems', ASME J. Mech. Des., Vol.104, pp. 247 - 255 https://doi.org/10.1115/1.3256318
  12. Kim,. S. S. and Vanderploeg, M. J., 1986, 'QR Decomposition for State Space Representation of constrained Mechanical Dynamic Systems', ASME J. Mech. Trans. Auto. Des., Vol.108, pp. 183 - 188 https://doi.org/10.1115/1.3260800
  13. Potra F. A., 1993, Implementation of Linear Multistep Methods for Solving Constrained Equations of Motion, 30(3), 774-789 https://doi.org/10.1137/0730039
  14. Shampine, L. F., and Gordon, M. K., 1975, ' Computer Solution of Ordinary Differential Equations: The Initial Value Problem,' W. J. Freeman, San Francisco, California
  15. Potra F. A. and Rheinboldt W. C., 1991,  On the Numerical Solution of Euler-Lagrange Equations , MECH. STRUCT. & MACH., 19(1), 1-18 https://doi.org/10.1080/08905459108905135