• Published : 2002.06.30



adsorption;granite;kinetic transport model;transport;uranium


  1. OECD/NEA, Geological disposal of radioactive waste: An overview of the current status of understanding and development, OECD, February (1984).
  2. Arnold, T., Zorn, T., Zanker, H., Bernhard, G., and Nitsche, H., "Sorption behavior of U(VI) on phyllite: experiments and modeling," J. Contam. Hydrol., 47, 219-231 (2001).
  3. Prikryl, J. D., Jain, A., Turner, D. R., and pabalan, R. T., "Uranium sorption behavior on silicate mineral mixtures," J. Contam. Hydrol., 47, 241-253, (2001).
  4. Serne, R. J., "Conceptual adsorption models and open issues pertaining to performance assessment," Proceedings of an NEA Workshop on Radionuclide sorption from the safety evaluation perspective OECD, Paris, pp. 237-282 (1992).
  5. Kohler, M., Curtis, G. P., Kent, D. B., and Davis, J. A., "Experimental investigation and modeling of uranium (VI) transport under variable chemical conditions," Water Resour. Res., 32, 3539-3551 (1996).
  6. Keum, D. K. and Hahn, P. S., "Application and development of a multigeochemical reaction equilibrium model (MUGREM)," Environ. Eng. Res., 4, 113-126 (1999).
  7. Turner, G. D., Zachara, J. M., Mckinley, J. P., and Smith, S. C., "Surface-charge properties and $UO_{2}^{2+}$ adsorption of a surface smectite," Geochim. Cosmochim. Acta, 60, 3399-3414 (1996).
  8. Silva, R. J., "Mechanisms for the retardation of uranium (VI) migration," Mat. Res. Soc. Symp. Proc., 257, 323-330 (1992).
  9. Bajracharya, K. and Barry, D. A., "Mixing cell models for nonlinear equilibrium single species adsorption and transport," J. Contam. Hydrol., 12, 227-243 (1993).
  10. Dzombak, D. A. and Morel, F. M. M., Surface complexation modeling: Hydrous Ferric oxide, John Wiley & Sons, Inc., New York (1990).
  11. Cui, D. and Eriksen, T., "Reactive transport of Sr, Cs and Tc through a column packed with fracture filling material," Radiochim. Acta, 82, 287-292 (1998).
  12. Said, A. S., "Theory and mathematics of chromatography," Chromatographic method, Bertsch, W. et al., (eds.), Dr. Alfred Huthig Verlag Heidelberg, pp. 127-128 (1981).
  13. Sardin, M. and Schweich, D., "Modeling the nonequilibrium transport of linearly interacting solutes in porous media: A review," Water Resour. Res., 27, 2287-2307 (1991).
  14. Grenthe, I., Fuger, J., Konings, R. J. M., Lemire, R. J., Muller, A. B., Nguyen-Trung, C., and Wanner, H., Chemical Thermodynamics 1: Chemical Thermodynamics of Uranium, OECD/BEA, North-Holland, Elsevier Scientific Publishing Co. New York (1992).
  15. Kuester, J. L. and Mize, J. H. Optimization techniques with Fortran, McGraw-Hill, New York, pp. 240-250 (1973).
  16. Jauzein, M., Andre, C., Margrita, R., Sardin, M., and Schweich, D., "A flexible computer code for modeling transport in porous media," Impact. Geoderma, 44, 95-113 (1989).
  17. McKinley, J. P., Zachara, J. M., Smith, S. C., and Turner, G. D., "The influence of hydrolysis and multiple site-binding reactions on adsorption of U(VI) to montmorillonite," Calys Clay Miner., 34, 586-598 (1995).
  18. Pabalan, R. T., Turner, D. R., Bertetti, F. P., and Prikryl, J. D., "Uranium(VI) sorption onto selected mineral surface," Adsorption of Metals by Geomedia, Jenne, E. A.(Ed.), Academic Press, San Diego, pp. 99-130 (1998).
  19. Read, D., Lawless, T. A., Sims, R. J., and Butter, K. R., "Uranium migration through intact sandstone cores," J. Contam. Hydrol., 13, 277-289 (1993).
  20. Waite, T. D., Davis, J. A., Payne, T. E., Waychunas, G. A., and Xu, N., "Uranium(VI) adsorption to ferrihydrite: application of a surface complexation model," Geochim. Cosmochim. Acta, 58, 5465-5478 (1994).
  21. Bidoglio, G., Offermann, P., and Saltelli, A., "Neptunium migration in oxidizing clayey sand," Appl. Geochem., 2, 275-284 (1987).
  22. Digital Visual Fortran, IMSL(R) Fortran 90 MP Library, Visual Numerics, Inc. (1997).