Characteristics of Dual Transverse Injection in Supersonic Flow Fields II-Combustion Characteristics

초음속 유동장 내 이중 수직분사의 특성에 관한 연구 II-연소특성

  • 신훈범 (울산대학교 항공우주공학과 대학원) ;
  • 이상현 (울산대학교 수송시스템학부 항공우주전공)
  • Published : 2002.09.30


Combustion characteristics of dual transverse injection of hydrogen in supersonic air flows were studied using computational methods. Three-dimensional Navier-Stokes with a non-equilibrium chemical reaction model and the k-$\omega$ SST turbulence model were used. A parametric study was conducted with the variation of the distance between two injectors. Combustion characteristics of dual injection are very different from those of single injection. The combustion characteristics of two injection flows are very different from each other, and the ignition and combustion characteristics of the rear injection flow are strongly influenced by those of the front injection flow. The increase of the distance between two injectors up to a specific distance results in the increase of burning rate. However, the increase of the distance over the specific distance gives no increase of burning rate but makes more losses of stagnation pressure. From the results it can be stated that there exists a distance between two injectors for optimum combustion characteristics.

초음속 유동장 내 수소 연료의 이중 분사가 갖는 연소 특성에 대한 수치연구를 수행하였다. 연료 이중 분사 유동 구조를 수치적으로 모사하기 비평형 화학반응을 포함한 3차원 Navier-Stokes 방정식과 k-$\omega$ SST난류 모델을 사용하였다. 이중 분사기 사이의 변화에 따른 연소특성의 변화를 이해하기 위해서 파라메터 연구를 수행하였다. 이중 수직분사의 연소특성은 단일 수직분사의 연소특성과 상당히 다른 양상을 보이는 것으로 나타났다. 이중 분사에서 두 분사유동의 연소특성은 서로 다른 것으로 나타났는데, 후방 분사류의 연소 특성은 전방 분사류의 유동 및 연소특성에 크게 영향을 받는 것으로 밝혀졌다. 분사기 사이의 거리가 어떤 특정 거리가 되기 전까지 증가할수록 연소율이 증가하는 것으로 나타났다. 하지만, 그 이후에는 연소율의 증가가 관찰되지 않았으며 오히려 정체압력의 감소가 커져서 전체적인 연소특성은 악화되는 것으로 나타났다. 이는 최적의 연소특성을 위한 두 분사기 사이의 거리가 존재함을 의미하는 것으로 판단된다.



  1. Bogdanoff, D. W., "Advanced Injection and Mixing Techniques for Scramjet Combustors," Journal of Propulsion and Power, Vol. 10, No. 2, 1994, pp. 183-190.
  2. Kumar, A, Bushnell, D. M., and Hussaini, M. Y, "Mixing Augmentation Technique for Hypervelocity Scramjets," Journal of Propulsion and Power, Vol. 5, No.5, 1989, pp. 514-522.
  3. E.T. Curran and S.N.B. Murthy., "SCRamjet Propulsion," AIAA, Volume 189 Progress in Astronautics and Aeronautics, 2001, pp. 386-388, 517-527, 539-564.
  4. Schetz, J. A, Weinraub, R. A, and Mahaffey, R. E., Jr., "Supersonic Transverse Injection into a Supersonic Stream," AlAA Journal, Vol. 6, No.5, 1968, pp. 933-934.
  5. Gruber, M. R., Nejad, A. S., and Goss, L. P., "Surface Pressure Measurements in Supersonic Transverse Injection Flowfield," AIAA Paper 97-3254.
  6. Everett, D. E, Woodmansee, M. A, Dutton, J. C. and Morris, M. L "Wall pressure Measurements for a Sonic Jet Injected Transversely into a Supersonic Crossflow," Journal of Propulsion and Power, Vol. 14, No.6, 1998, pp. 861-868.
  7. Gruber, M. R., Nejad, A S. Chen, T. H. and Dutton, J. C. " Bow Shock/Jet Interaction in Compressible Trasverse Injection Flowfields," Phys. Fluids, Vol. 9, No.5, 1997, pp. 1448-1461.
  8. Lee, S-H., Jeung, I-S., and Yoon, Y., Computational Investigation of Shock-Enhanced Mixing and Combustion, AIAA Journal, Vol. 35, No. 12, 1997, pp. 1813-1820.
  9. Yoon, S. J., "Numerical Navier-Stokes Solutions of Supersonic Slot Injection Problems," Dissertation of Ph. D., Virginia Polytechnic Institute and State University, 1988.
  10. Wilcox, D. C, "Turbulence Modeling for CFD," DCW Industries, 1993, pp. 73-212.
  11. Kuo, K. K., "Principles of Combustion," John Wiley & Sons, Inc, 1986.
  12. Lewis, B., and von Elbe, G., "Combustion, Flames and Explosions of Gases," 3rd Ed., Academic Press, Inc., 1987.
  13. Jachimowski, C. J., "An Analytical Study of the Hydrogen-Air Reaction Mechanism with Application to Scramjet Combustion," NASA TR-2791, 1988.
  14. Reid, C. R., Prausnitz, J. M., and Poling, B. E., "The Properties of Gases and Liquids," 4th ed., McGraw-Hill, New York, 1988, pp. 388-631.
  15. Anderson, W. K., and Thomas, J. L., "Comparison of Finite Volume Flux Vector Splitting for the Euler Equations," AIAA Journal, Vol. 24, No.9, 1986, pp. 1453-1460.
  16. Edwards, J. R., "A Low-Diffusion Flux-Splitting Scheme for Navier-Stokes Calculations, Computers and Fluids," Vol. 26, No.6, 1997, pp. 635-659.
  17. Yoon, S., and Jameson, A., "Lower-Upper Symmetric-Gauss-Seidel Method for the Euler and Navier-Stokes Equation," AlAA Journal, Vol. 26, No.9, 1988, pp. 1025-1026.
  18. Shuen, J. S., and Yoon, S., "Numerical Study of Chemically Reacting Flows Using a Lower-Upper Symmetric Successive Overrelaxation Scheme," AIAA Journal, Vol. 27, No. 12, 1989, pp. 1752-1760.
  19. Waidmann, W., Alff, F., Bohm, M., Brudmmund, W., Claub, W., and Schhwald, M., "Supersonic Combustion of Hydrogen/ Air in a SCRamjet Combustion Chamber," Space Technology, Vol. 15, No.6, 1995, pp 421-429.
  20. 신훈범,이상현, "초음속 유동장 내의 이중수직분사의 특성에 관한 연구 - 혼합특성," 한국항공우주학회지, 30권, 6호, 2002.